Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 239

Question Number 57948    Answers: 0   Comments: 0

let A(ξ) =∫_ξ ^ξ^2 ((arctan(1+ξt)−(π/4))/((√(2+ξt))−(√(2−ξt)))) dt find lim_(ξ →0) A(ξ) .

letA(ξ)=ξξ2arctan(1+ξt)π42+ξt2ξtdtfindlimξ0A(ξ).

Question Number 57900    Answers: 0   Comments: 1

let f(x) =∫_0 ^∞ ((cos(πxt))/((t^2 +3x^2 )^2 )) dt with x>0 1) find a explicit form for f(x) 2) find the value of ∫_0 ^∞ ((cos(πt))/((t^2 +3)^2 ))dt 3) let U_n =f(n) find nature of Σ U_n

letf(x)=0cos(πxt)(t2+3x2)2dtwithx>01)findaexplicitformforf(x)2)findthevalueof0cos(πt)(t2+3)2dt3)letUn=f(n)findnatureofΣUn

Question Number 57899    Answers: 0   Comments: 2

let f(x) =∫_0 ^(+∞) (dt/((t^2 +x^2 )^3 )) with x>0 1) find a explicit form off (x) 1) calculate ∫_0 ^∞ (dx/((t^2 +3)^3 )) and ∫_0 ^∞ (dt/((t^2 +4)^3 )) 2) find the value of A(θ) =∫_0 ^∞ (dt/((t^2 +sin^2 θ)^3 )) with 0<θ<π.

letf(x)=0+dt(t2+x2)3withx>01)findaexplicitformoff(x)1)calculate0dx(t2+3)3and0dt(t2+4)32)findthevalueofA(θ)=0dt(t2+sin2θ)3with0<θ<π.

Question Number 57825    Answers: 1   Comments: 1

calculate ∫_0 ^π ((2xsinx)/(3 +cos(2x)))dx .

calculate0π2xsinx3+cos(2x)dx.

Question Number 57821    Answers: 2   Comments: 0

find the common area of: { (((x^2 /3)+y^2 =1)),((x^2 +(y^2 /3)=1)) :}

findthecommonareaof:{x23+y2=1x2+y23=1

Question Number 57819    Answers: 2   Comments: 7

a. ∫ [((1−e^x )/(1+e^x ))]^(1/2) dx=? b. ∫ ((lnx)/(√(1+x)))=? c. ∫_( (√e)) ^( e) sin(lnx)dx=?

a.[1ex1+ex]12dx=?b.lnx1+x=?c.eesin(lnx)dx=?

Question Number 57817    Answers: 1   Comments: 1

find the value of ∫_(π/3) ^(π/2) (dx/(√(2cos^2 x +3sin^2 x)))

findthevalueofπ3π2dx2cos2x+3sin2x

Question Number 57750    Answers: 1   Comments: 0

find ∫ x^2 (√(25−x^2 ))dx

findx225x2dx

Question Number 57749    Answers: 1   Comments: 3

find ∫ (dx/(x^2 (√(9+x^2 ))))

finddxx29+x2

Question Number 57748    Answers: 2   Comments: 2

find ∫ x^2 (√(4+x^2 ))dx

findx24+x2dx

Question Number 57746    Answers: 0   Comments: 4

let f(x)=∫_(−∞) ^(+∞) (dt/((t^2 −2xt +1)^2 )) with ∣x∣<1 (x real) 1) determine a explicit form for f(x) 2) find also g(x) =∫_(−∞) ^(+∞) ((tdt)/((t^2 −2xt +1)^3 )) 3) calculate ∫_(−∞) ^(+∞) (dt/((t^2 −(√2)t +1)^2 )) and ∫_(−∞) ^(+∞) ((tdt)/((t^2 −(√2)t +1)^3 )) 4) calculate A(θ) =∫_(−∞) ^(+∞) (dt/((t^2 −2cosθ t+1)^2 )) and B(θ) =∫_(−∞) ^(+∞) ((tdt)/((t^2 −2cosθ t +1)^3 )) with 0<θ <(π/2) .

letf(x)=+dt(t22xt+1)2withx∣<1(xreal)1)determineaexplicitformforf(x)2)findalsog(x)=+tdt(t22xt+1)33)calculate+dt(t22t+1)2and+tdt(t22t+1)34)calculateA(θ)=+dt(t22cosθt+1)2andB(θ)=+tdt(t22cosθt+1)3with0<θ<π2.

Question Number 57668    Answers: 0   Comments: 3

let V_n = ∫_0 ^(1+(1/n)) ((x+1)/(√(2x^2 +3))) dx 1) calculate lim_(n→+∞) V_n 2) find nature of the serie Σ V_n

letVn=01+1nx+12x2+3dx1)calculatelimn+Vn2)findnatureoftheserieΣVn

Question Number 57667    Answers: 0   Comments: 3

calculate U_n =∫_(π/n) ^((2π)/n) (dx/(2 +sinx)) 1) calculate U_n and lim_(n→+∞) nU_n 2) find nature of Σ U_n

calculateUn=πn2πndx2+sinx1)calculateUnandlimn+nUn2)findnatureofΣUn

Question Number 57666    Answers: 0   Comments: 3

1) calculate f(θ) =∫_0 ^1 (√(t^2 +2sinθt +1))dt with 0≤θ≤(π/2) 2) calculate g(t) =∫_0 ^1 (√(t^2 +2(sinθ)t +1))dθ 3) find also h(θ) =∫_0 ^1 (t/(√(t^2 +2(sinθ)t +1)))dt

1)calculatef(θ)=01t2+2sinθt+1dtwith0θπ22)calculateg(t)=01t2+2(sinθ)t+1dθ3)findalsoh(θ)=01tt2+2(sinθ)t+1dt

Question Number 57665    Answers: 0   Comments: 4

let f(a) =∫_(π/4) ^(π/3) (√(a+tan^2 x))dx with a>0 1) find a explicit form of f(a) 2) find also g(a) =∫_(π/4) ^(π/3) (dx/(√(a+tan^2 x))) 3) find the values of ∫_(π/4) ^(π/3) (√(2+tan^2 x))dx and ∫_(π/4) ^(π/3) (dx/(√(3+tan^2 x)))

letf(a)=π4π3a+tan2xdxwitha>01)findaexplicitformoff(a)2)findalsog(a)=π4π3dxa+tan2x3)findthevaluesofπ4π32+tan2xdxandπ4π3dx3+tan2x

Question Number 57653    Answers: 0   Comments: 5

is it possible to find the exact value of I? I=∫_0 ^π sin (sin x) dx

isitpossibletofindtheexactvalueofI?I=π0sin(sinx)dx

Question Number 57490    Answers: 1   Comments: 2

1)findF(a)= ∫_0 ^∞ ((cos(ln(2+x^2 )))/(a^2 +x^2 ))dx witha>0 2) find the value of ∫_0 ^∞ ((cos(ln(2+x^2 )))/(4+x^2 ))dx.

1)findF(a)=0cos(ln(2+x2))a2+x2dxwitha>02)findthevalueof0cos(ln(2+x2))4+x2dx.

Question Number 57487    Answers: 0   Comments: 1

calculate lim_(x→1) ∫_x ^x^2 ((arctan(t))/(sint))dt .

calculatelimx1xx2arctan(t)sintdt.

Question Number 57423    Answers: 0   Comments: 0

let A_n =∫_0 ^∞ (dt/((e^t +e^(−t) )^n )) calculate A_n interms of n

letAn=0dt(et+et)ncalculateAnintermsofn

Question Number 57421    Answers: 1   Comments: 0

calculate ∫_(−1) ^1 (((x^4 +x^2 +1)^2 +e^x )/(e^x +1))dx

calculate11(x4+x2+1)2+exex+1dx

Question Number 57420    Answers: 0   Comments: 1

let J(x)=∫_0 ^x (t^2 /((√(t+1)) +(√(t+4))))dt find a explicit form of J(x)

letJ(x)=0xt2t+1+t+4dtfindaexplicitformofJ(x)

Question Number 57419    Answers: 0   Comments: 1

find ∫_0 ^1 (x+1) ln(x+(√(1+x^2 )))dx

find01(x+1)ln(x+1+x2)dx

Question Number 57418    Answers: 0   Comments: 1

calculate ∫_(−1) ^4 ((∣x−1∣+∣x−2∣)/(∣x^2 −9∣ +x^2 +16))dx

calculate14x1+x2x29+x2+16dx

Question Number 57417    Answers: 0   Comments: 2

let F(x) =∫_0 ^x ((1+sint)/(2+cost))dt 1) find a explicite form of f(x) 2) calculate ∫_0 ^π ((1+sint)/(2+cost))dt

letF(x)=0x1+sint2+costdt1)findaexpliciteformoff(x)2)calculate0π1+sint2+costdt

Question Number 57388    Answers: 0   Comments: 0

Given f(x) = f(x + 2016), ∀x ∈ R If ∫_0 ^3 f(x) = 30, then ∫_3 ^5 f(x + 2016) = ...

Givenf(x)=f(x+2016),xRIf30f(x)=30,then53f(x+2016)=...

Question Number 57385    Answers: 1   Comments: 1

  Pg 234      Pg 235      Pg 236      Pg 237      Pg 238      Pg 239      Pg 240      Pg 241      Pg 242      Pg 243   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com