Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 240

Question Number 56698    Answers: 0   Comments: 2

find the value of ∫_0 ^∞ ((sin(x^2 ))/(x^4 +4))dx

findthevalueof0sin(x2)x4+4dx

Question Number 56629    Answers: 0   Comments: 2

1) calculate I =∫_(−∞) ^(+∞) (dx/(x^2 −i)) and J =∫_(−∞) ^(+∞) (dx/(x^2 −i)) 2) find the value of ∫_(−∞) ^(+∞) (dx/(x^4 +1))

1)calculateI=+dxx2iandJ=+dxx2i2)findthevalueof+dxx4+1

Question Number 56523    Answers: 0   Comments: 2

∫x(√(3x^3 +2)) dx=?

x3x3+2dx=?

Question Number 56383    Answers: 2   Comments: 4

Question Number 56329    Answers: 0   Comments: 1

1)calculate A_n =∫_(1/n) ^1 ((ln(1+x^2 ))/(1+x^2 ))dx with n integr and n≥1 2) find lim_(n→+∞) A_n 3) study the convergence of Σ A_n

1)calculateAn=1n1ln(1+x2)1+x2dxwithnintegrandn12)findlimn+An3)studytheconvergenceofΣAn

Question Number 56345    Answers: 0   Comments: 1

let f(a) =∫_0 ^∞ (dx/(x^n +a^n )) with n integr ≥2 and a>0 1) calculate f(a) intems of a 2) let g(a) =∫_0 ^∞ (dx/((x^n +a^n )^2 )) calculate g(a) interms of a 3) find the values of integrals ∫_0 ^∞ (dx/(x^8 +16)) and ∫_0 ^∞ (dx/((x^8 +16)^2 ))

letf(a)=0dxxn+anwithnintegr2anda>01)calculatef(a)intemsofa2)letg(a)=0dx(xn+an)2calculateg(a)intermsofa3)findthevaluesofintegrals0dxx8+16and0dx(x8+16)2

Question Number 56311    Answers: 0   Comments: 1

let f(x) =∫_0 ^∞ ((cos(xt))/(x^2 +t^2 )) dt with x>0 1) find f(x) 2) find the values of ∫_0 ^∞ ((cos(t))/(1+t^2 ))dt and ∫_0 ^∞ ((cos(2t))/(4+t^2 ))dt 3) let U_n =∫_0 ^∞ ((cos(nt))/(n^2 +t^2 ))dt find lim_(n→+∞) U_n and study the convergenge of Σ U_n and Σ U_n ^2

letf(x)=0cos(xt)x2+t2dtwithx>01)findf(x)2)findthevaluesof0cos(t)1+t2dtand0cos(2t)4+t2dt3)letUn=0cos(nt)n2+t2dtfindlimn+UnandstudytheconvergengeofΣUnandΣUn2

Question Number 56310    Answers: 0   Comments: 2

let f(x)=∫_(−∞) ^(+∞) cos(t^2 +xt +3)dt with x>0 1) find f(x) 2) calculate ∫_1 ^4 f(x)dx and ∫_1 ^(+∞) f(x)dx

letf(x)=+cos(t2+xt+3)dtwithx>01)findf(x)2)calculate14f(x)dxand1+f(x)dx

Question Number 56280    Answers: 2   Comments: 2

Evaluate : 1) ((∫_0 ^( 1_ ) (1−(1−x^2 )^(100) )^(201) .xdx)/(∫_0 ^( 1) (1−(1−x^2 )^(100) )^(202) .xdx)) = ? 2) ((∫_0 ^( 1) (1−x^(200) )^(201) dx)/(∫_0 ^( 1) (1−x^(200) )^(202) dx)) = ?

Evaluate:1)01(1(1x2)100)201.xdx01(1(1x2)100)202.xdx=?2)01(1x200)201dx01(1x200)202dx=?

Question Number 56189    Answers: 0   Comments: 2

let u_n =∫_(−∞) ^∞ ((sin(nx^2 ))/(x^2 +x +n)) dx 1) calculate u_n 2) find lim_(n→+∞) u_n 3) study the serie Σ u_n

letun=sin(nx2)x2+x+ndx1)calculateun2)findlimn+un3)studytheserieΣun

Question Number 56188    Answers: 1   Comments: 0

find the value of ∫_0 ^∞ (((1+x)^(−(1/4)) −(1+x)^(−(3/4)) )/x) dx

findthevalueof0(1+x)14(1+x)34xdx

Question Number 56187    Answers: 0   Comments: 0

study the convergence of ∫_0 ^∞ (((1+x)^α −(1+x)^β )/x) dx .

studytheconvergenceof0(1+x)α(1+x)βxdx.

Question Number 56186    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((arctan(ix))/(2+x^2 ))dx

calculate0arctan(ix)2+x2dx

Question Number 56169    Answers: 1   Comments: 0

∫^1 _(−∞) (a+bi)^x dx=?

1(a+bi)xdx=?

Question Number 56107    Answers: 2   Comments: 1

∫_(−1) ^0 ∣x sin (πx)∣ dx

10xsin(πx)dx

Question Number 56061    Answers: 1   Comments: 0

∫_0 ^1 e^(−x^2 ) dx correct to 3 decimal place.

01ex2dxcorrectto3decimalplace.

Question Number 56060    Answers: 0   Comments: 3

∫e^(−x^2 ) dx as an infinite series.Hence investigate its converge.

ex2dxasaninfiniteseries.Henceinvestigateitsconverge.

Question Number 55999    Answers: 0   Comments: 1

Question Number 55998    Answers: 1   Comments: 1

find f(x) =∫_0 ^1 arctan(t^2 +xt +1)dt .

findf(x)=01arctan(t2+xt+1)dt.

Question Number 55997    Answers: 0   Comments: 0

calculate ∫_(π/3) ^(π/2) (dx/(x+sinx))

calculateπ3π2dxx+sinx

Question Number 55996    Answers: 0   Comments: 1

find ∫_(π/3) ^(π/2) (x/(cosx))dx

findπ3π2xcosxdx

Question Number 55995    Answers: 1   Comments: 1

find I =∫ arctan(1−x)dx and J =∫ actan(1+x) dx

findI=arctan(1x)dxandJ=actan(1+x)dx

Question Number 55994    Answers: 1   Comments: 0

calculate ∫_0 ^1 arctan(x^2 −x)dx

calculate01arctan(x2x)dx

Question Number 55987    Answers: 0   Comments: 0

Question Number 55930    Answers: 2   Comments: 0

∫_0 ^( π) ((xtan x)/(sec x+tan x))dx = (is it (π^2 /2)−π)?

0πxtanxsecx+tanxdx=(isitπ22π)?

Question Number 55873    Answers: 2   Comments: 1

Integrate..∫(√(1+(√(1+(√x))))) dx

Integrate..1+1+xdx

  Pg 235      Pg 236      Pg 237      Pg 238      Pg 239      Pg 240      Pg 241      Pg 242      Pg 243      Pg 244   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com