Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 241

Question Number 55638    Answers: 1   Comments: 0

For all n ∈ N f_n (x)= { ((((nx)/(2n−1)), x ∈ [0, ((2n−1)/n)])),((1 , x ∈[((2n−1)/n), 2])) :} then for n→∞ ∫_1 ^2 f_n (x) dx convergences to..

ForallnNfn(x)={nx2n1,x[0,2n1n]1,x[2n1n,2]thenforn12fn(x)dxconvergencesto..

Question Number 55615    Answers: 1   Comments: 0

let F(α)=∫_α ^(1+α^2 ) ((sin(αx))/(1+αx^2 ))dx 1) calculate (dF/dα)(α) 2) calculate lim_(α→0) F(α)

letF(α)=α1+α2sin(αx)1+αx2dx1)calculatedFdα(α)2)calculatelimα0F(α)

Question Number 55571    Answers: 0   Comments: 1

let u_n = ∫_(π/(n+1)) ^(π/n) (√(tan(x)))dx with n≥3 1) calculate U_n interms of n and calculate lim_(n→+∞ ) U_n 2) find nature of the serie Σ_(n≥3) U_n

letun=πn+1πntan(x)dxwithn31)calculateUnintermsofnandcalculatelimn+Un2)findnatureoftheserien3Un

Question Number 55560    Answers: 1   Comments: 0

Question Number 55577    Answers: 1   Comments: 1

Question Number 55520    Answers: 3   Comments: 2

How can solve ∫(√)tan(x)dx ?

Howcansolvetan(x)dx?

Question Number 55467    Answers: 0   Comments: 3

Question Number 55457    Answers: 0   Comments: 2

calculate ∫_0 ^∞ ((ln(x))/(x^2 +x+1))dx .

calculate0ln(x)x2+x+1dx.

Question Number 55364    Answers: 0   Comments: 0

prove that ∫_(−∞ ) ^∞ f(x)dx=1 such that f(x)=(1/((√n) β((n/2),(1/2))))(1+(x^2 /n))^(−(1/2)(1+n)) and β((n/2),(1/2))=∫_0 ^∞ (x^((n/2)−1) /((1+x)^(3/2) ))dx

provethatf(x)dx=1suchthatf(x)=1nβ(n2,12)(1+x2n)12(1+n)andβ(n2,12)=0xn21(1+x)32dx

Question Number 55360    Answers: 2   Comments: 1

∫_1 ^( 2) (√(sin (3x−x^2 −2)))dx + (1/2)∫_3 ^1 (√(sin(((4t−t^2 −3)/4))))dt =?

12sin(3xx22)dx+1231sin(4tt234)dt=?

Question Number 55310    Answers: 1   Comments: 1

∫ 3x(√( 3x^3 + 7)) dx = . . . .

3x3x3+7dx=....

Question Number 55282    Answers: 1   Comments: 1

calculatef(a)= ∫ (1+(a/x^2 ))arctan((a/x))dx 2) calculate ∫_1 ^(+∞) (1+(2/x^2 ))arctan((2/x))dx .

calculatef(a)=(1+ax2)arctan(ax)dx2)calculate1+(1+2x2)arctan(2x)dx.

Question Number 55280    Answers: 1   Comments: 1

fint f(t)=∫_0 ^1 ((ln(1+tx^2 ))/x^2 )dx .

fintf(t)=01ln(1+tx2)x2dx.

Question Number 55279    Answers: 0   Comments: 0

find L( e^(−x) ln(1+x^2 )) with L mean laplace transform

findL(exln(1+x2))withLmeanlaplacetransform

Question Number 55278    Answers: 0   Comments: 0

calculate ∫_0 ^(+∞) (dx/((x+1)(x+2)....(x+n)))

calculate0+dx(x+1)(x+2)....(x+n)

Question Number 55274    Answers: 0   Comments: 4

let ϕ(a) =∫_1 ^(√3) arctan((a/x))dx 1) calculate ϕ(a) interms of a 2) calculate ϕ^′ (a) at form of integral. 3) determine ϕ^((n)) (a) at form of integral. 4) find the value of ∫_1 ^(√3) arctan((2/x))dx .

letφ(a)=13arctan(ax)dx1)calculateφ(a)intermsofa2)calculateφ(a)atformofintegral.3)determineφ(n)(a)atformofintegral.4)findthevalueof13arctan(2x)dx.

Question Number 55273    Answers: 0   Comments: 1

let f(x) =∫_x^2 ^(1+x) (dt/(1+t+t^2 )) 1) calculate f(x) interms of x 2) calculate lim_(x→0) f(x) and lim_(x→+∞) f(x)

letf(x)=x21+xdt1+t+t21)calculatef(x)intermsofx2)calculatelimx0f(x)andlimx+f(x)

Question Number 55271    Answers: 0   Comments: 0

1) let f(x) =∫_0 ^(2π) ((cost)/(3 +sin(xt)))dt find a explicit form of f(x) 2) calculate g(x) =∫_0 ^(2π) ((tcos(xt)cost)/((3 +sin(xt))^2 ))dt 3) calculate ∫_0 ^(2π) ((cost)/(3+sint)) and ∫_0 ^(2π) ((t cos^2 t)/((3+sint)^2 ))dt

1)letf(x)=02πcost3+sin(xt)dtfindaexplicitformoff(x)2)calculateg(x)=02πtcos(xt)cost(3+sin(xt))2dt3)calculate02πcost3+sintand02πtcos2t(3+sint)2dt

Question Number 55267    Answers: 0   Comments: 0

1) calculate f(x)=∫_0 ^(π/4) ln(1+xtanθ)dθ 2) find the values of integrals ∫_0 ^(π/4) ln(1+tanθ) and ∫_0 ^(π/4) ln(1+2tanθ)dθ . 1) we have f^′ (x)=∫_0 ^(π/4) ((tanθ)/(1+xtanθ)) dθ =∫_0 ^(π/4) (((sinθ)/(cosθ))/(1+x((sinθ)/(cosθ))))dθ =∫_0 ^(π/4) ((sinθ)/(cosθ +xsinθ)) dθ =_(tan((θ/2))=t) ∫_0 ^((√2)−1) (((2t)/(1+t^2 ))/(((1−t^2 )/(1+t^2 )) +((2xt)/(1+t^2 )))) ((2dt)/(1+t^2 )) =∫_0 ^((√2)−1) ((4t)/((1+t^2 )(1−t^2 +2xt)))dt =−∫_0 ^((√2)−1) ((4t)/((t^2 +1)(t^2 −2xt −1)))dt let decompose F(t) = ((4t)/((t^2 +1)(t^2 −2xt −1))) roots of t^2 −2xt −1 Δ^′ =x^2 +1 ⇒t_1 =x+(√(x^2 +1)) and t_2 =x−(√(x^2 +1)) F(t)=(a/(t−t_1 )) +(b/(t−t_2 )) +((ct +d)/(t^2 +1)) a =lim_(t→t_1 ) (t−t_1 )F(t)=((4t_1 )/((t_1 ^2 +1)(t_1 −t_2 ))) =α b =lim_(t→t_2 ) (t−t_2 )F(t) =((4t_2 )/((t_2 ^2 +1)(t_2 −t_1 ))) =β ⇒F(t)=(α/(t−t_1 )) +(β/(t−t_2 )) +((ct +d)/(t^2 +1)) F(0) =0=−(α/t_1 ) −(β/t_2 ) +d ⇒d =(α/t_1 ) +(β/t_2 ) F(1)=(2/(−2x)) =−(1/x)=(α/(1−t_1 )) +(β/(1−t_2 )) +((c+d)/2) ⇒(1/x) =(α/(t_1 −1)) +(β/(t_2 −1)) −(c/2) −(d/2) ⇒(c/2) =(α/(t_1 −1)) +(β/(t_2 −1)) −(d/2) −(1/x) ⇒c =((2α)/(t_1 −1)) +((2β)/(t_2 −1)) −d−(2/x) ∫ F(t)dt =αln∣t−t_1 ∣ +βln∣t−t_2 ∣ +(c/2)ln(t^2 +1) +d arctan(t) ⇒ ∫_0 ^((√2)−1) F(t)dt =[αln∣t−t_1 ∣+βln∣t−t_2 ∣ +(c/2)ln(t^2 +1)]_0 ^((√2)−1) =αln∣(√2)−1−t_1 ∣ +βln∣(√2)−1−t_2 ∣ +(c/2)ln(4−2(√2)) =αln∣(√2)−1−x−(√(1+x^2 )))+βln∣(√2)−1−x+(√(1+x^2 ))) +((ln(4−2(√2)))/2)c =f^′ (x) ⇒ f(x)=∫ αln∣(√2)−1−x−(√(1+x^2 ))∣)dx+β∫ ln∣(√2)−1+(√(1+x^2 ))∣dx +((cx)/2)ln(4−2(√2)) +C ....be continued...

1)calculatef(x)=0π4ln(1+xtanθ)dθ2)findthevaluesofintegrals0π4ln(1+tanθ)and0π4ln(1+2tanθ)dθ.1)wehavef(x)=0π4tanθ1+xtanθdθ=0π4sinθcosθ1+xsinθcosθdθ=0π4sinθcosθ+xsinθdθ=tan(θ2)=t0212t1+t21t21+t2+2xt1+t22dt1+t2=0214t(1+t2)(1t2+2xt)dt=0214t(t2+1)(t22xt1)dtletdecomposeF(t)=4t(t2+1)(t22xt1)rootsoft22xt1Δ=x2+1t1=x+x2+1andt2=xx2+1F(t)=att1+btt2+ct+dt2+1a=limtt1(tt1)F(t)=4t1(t12+1)(t1t2)=αb=limtt2(tt2)F(t)=4t2(t22+1)(t2t1)=βF(t)=αtt1+βtt2+ct+dt2+1F(0)=0=αt1βt2+dd=αt1+βt2F(1)=22x=1x=α1t1+β1t2+c+d21x=αt11+βt21c2d2c2=αt11+βt21d21xc=2αt11+2βt21d2xF(t)dt=αlntt1+βlntt2+c2ln(t2+1)+darctan(t)021F(t)dt=[αlntt1+βlntt2+c2ln(t2+1)]021=αln21t1+βln21t2+c2ln(422)=αln21x1+x2)+βln21x+1+x2)+ln(422)2c=f(x)f(x)=αln21x1+x2)dx+βln21+1+x2dx+cx2ln(422)+C....becontinued...

Question Number 55237    Answers: 1   Comments: 1

∫_0 ^3 ∫_1 ^2 (x^3 +y^2 )dxdy

0312(x3+y2)dxdy

Question Number 55230    Answers: 0   Comments: 1

calculate lim_(ξ→0) ∫_1 ^(1+ξ) ((arctan(ξt))/t) dt .

calculatelimξ011+ξarctan(ξt)tdt.

Question Number 55229    Answers: 0   Comments: 1

calculate lim_(n→+∞) ∫_0 ^n (e^(nx) /(1+nx^2 )) dx .

calculatelimn+0nenx1+nx2dx.

Question Number 55223    Answers: 0   Comments: 5

Question Number 55214    Answers: 1   Comments: 1

let U_n =∫_(1/n) ^1 (√(x^2 +(3/n)))dx .calculate lim_(n→+∞) U_n

letUn=1n1x2+3ndx.calculatelimn+Un

Question Number 55197    Answers: 0   Comments: 4

∫(dα/(1−sin^3 α))=? ∫(dβ/(1−cos^3 β))=? ∫(dγ/(1−tan^3 γ))=?

dα1sin3α=?dβ1cos3β=?dγ1tan3γ=?

Question Number 55129    Answers: 1   Comments: 1

question 54995 reposted ∫((x^3 +x^2 ))^(1/3) dx=?

question54995repostedx3+x23dx=?

  Pg 236      Pg 237      Pg 238      Pg 239      Pg 240      Pg 241      Pg 242      Pg 243      Pg 244      Pg 245   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com