Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 243

Question Number 54372    Answers: 1   Comments: 3

let f(x) =∫_0 ^(2π) ((sint)/(x+sint))dt 1) calculate f(x) 2) calculate g(x) =∫_0 ^(2π) ((sint)/((x+sint)^2 )) dt 3) calculste for n∈N ∫_0 ^(2π) ((sint)/((x+sint)^n ))dt 4) calculate ∫_0 ^(2π) ((sint)/(2+sint))dt and ∫_0 ^(2π) ((sint)/((2+sint)^2 ))dt .

letf(x)=02πsintx+sintdt1)calculatef(x)2)calculateg(x)=02πsint(x+sint)2dt3)calculstefornN02πsint(x+sint)ndt4)calculate02πsint2+sintdtand02πsint(2+sint)2dt.

Question Number 54371    Answers: 1   Comments: 1

prove that ln(z) = ∫_0 ^1 ((z−1)/(1+t(z−1)))dt .

provethatln(z)=01z11+t(z1)dt.

Question Number 54367    Answers: 1   Comments: 1

find ∫_1 ^(+∞) (([t])/t) t^(−p) dt interms of ξ(p) with p>0 .

find1+[t]ttpdtintermsofξ(p)withp>0.

Question Number 54259    Answers: 1   Comments: 1

Question Number 54273    Answers: 2   Comments: 0

Question Number 54248    Answers: 2   Comments: 1

Question Number 54240    Answers: 1   Comments: 1

Question Number 54224    Answers: 2   Comments: 4

∫_0 ^( (π/4)) ((sinx+cosx)/(16+9sin2x)) dx =?

0π4sinx+cosx16+9sin2xdx=?

Question Number 54209    Answers: 2   Comments: 0

Question Number 54102    Answers: 1   Comments: 3

the absolute value ∫_(10) ^(19) ((cos x)/(1+x^8 )) dx is...

theabsolutevalue1019cosx1+x8dxis...

Question Number 54074    Answers: 1   Comments: 5

Evaluate : 1) ∫_0 ^( 1) (dx/((√(1+x))+(√(1−x))+2)) 2) ∫_0 ^( 2) ((ln(1+2x))/(1+x^2 )) 3) ∫_0 ^( π) (x/(√(1+sin^3 x)))((3πcosx+4sinx)sin^2 x+4)dx 4) ∫_0 ^( π) ((x^2 cos^2 x−xsinx−cosx−1)/((1+xsinx)^2 )) dx.

Evaluate:1)01dx1+x+1x+22)02ln(1+2x)1+x23)0πx1+sin3x((3πcosx+4sinx)sin2x+4)dx4)0πx2cos2xxsinxcosx1(1+xsinx)2dx.

Question Number 54073    Answers: 1   Comments: 0

Question Number 54070    Answers: 2   Comments: 7

Evaluate : 1) ∫_(−1) ^( 1) cot^(−1) ((1/(√(1−x^2 )))).(cot^(−1) (x/(√(1−(x^2 )^(∣x∣) ))))dx 2) ∫_0 ^( (π/2)) ((sin^2 (10)θ)/(sin^2 θ)) dθ 3) ∫_0 ^( (π/4)) ((ln(cotx))/(((sinx)^(2009) +(cosx)^(2009) )^2 )).(sin2x)^(2008) dx 4) ∫_0 ^( 2) ((4x+10)/((x^2 +5x+6)^2 )) dx.

Evaluate:1)11cot1(11x2).(cot1x1(x2)x)dx2)0π2sin2(10)θsin2θdθ3)0π4ln(cotx)((sinx)2009+(cosx)2009)2.(sin2x)2008dx4)024x+10(x2+5x+6)2dx.

Question Number 54011    Answers: 1   Comments: 2

calculate f(a) =∫ (dx/((√(1+ax))−(√(1−ax)))) with a>0 . 2) calculate U_n =∫_(−(1/(na))) ^(1/(na)) (dx/((√(1+ax))−(√(1−ax)))) with n from N and n>1 find lim_(n→+∞) U_n and study the convergence of Σ U_n

calculatef(a)=dx1+ax1axwitha>0.2)calculateUn=1na1nadx1+ax1axwithnfromNandn>1findlimn+UnandstudytheconvergenceofΣUn

Question Number 53967    Answers: 2   Comments: 1

1)calculate A_t =∫_0 ^∞ e^(−xt) sinxdx with x>0 2) by using Fubuni theorem find the value of ∫_0 ^∞ ((sinx)/x)dx .

1)calculateAt=0extsinxdxwithx>02)byusingFubunitheoremfindthevalueof0sinxxdx.

Question Number 53966    Answers: 0   Comments: 1

let f(x) =xsinx ,2π periodic even developp f at Fourier serie .

letf(x)=xsinx,2πperiodicevendeveloppfatFourierserie.

Question Number 53956    Answers: 0   Comments: 1

give∫_0 ^1 e^(−x) ln(1−x)dx at form of serie

give01exln(1x)dxatformofserie

Question Number 53950    Answers: 0   Comments: 1

calculate ∫_(1/3) ^(1/2) Γ(x)Γ(1−x)dx with Γ(x) =∫_0 ^∞ t^(x−1) e^(−t) dt with x>0 .

calculate1312Γ(x)Γ(1x)dxwithΓ(x)=0tx1etdtwithx>0.

Question Number 53958    Answers: 0   Comments: 0

find the value of ∫_0 ^1 ln(x)ln(1−x^2 )dx

findthevalueof01ln(x)ln(1x2)dx

Question Number 53963    Answers: 0   Comments: 1

let f(x) = x∣x∣ , 2π periodic odd developp f at fourier serie .

letf(x)=xx,2πperiodicodddeveloppfatfourierserie.

Question Number 53931    Answers: 0   Comments: 1

∫x!dx

x!dx

Question Number 53843    Answers: 1   Comments: 0

Question Number 53785    Answers: 0   Comments: 1

let f(x)=∫_0 ^∞ ((tsin(tx))/(1+t^4 ))dt with x>0 1) find a explicit form of f(x) 2) find the value of ∫_0 ^∞ ((tsin(2t))/(1+t^4 ))dt.

letf(x)=0tsin(tx)1+t4dtwithx>01)findaexplicitformoff(x)2)findthevalueof0tsin(2t)1+t4dt.

Question Number 53783    Answers: 1   Comments: 0

calculate ∫_0 ^∞ (t^2 /(e^t −1))dt interms of ξ(3)

calculate0t2et1dtintermsofξ(3)

Question Number 53782    Answers: 1   Comments: 0

calculate ∫_0 ^1 (t^2 /(1+t^3 ))dt

calculate01t21+t3dt

Question Number 53624    Answers: 0   Comments: 0

find ∫_(−∞) ^(+∞) e^(−x^2 ) (√(1+2x^2 ))dx

find+ex21+2x2dx

  Pg 238      Pg 239      Pg 240      Pg 241      Pg 242      Pg 243      Pg 244      Pg 245      Pg 246      Pg 247   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com