Question and Answers Forum |
IntegrationQuestion and Answers: Page 243 |
let f(a) =∫_0 ^∞ (dx/(x^n +a^n )) with n integr ≥2 and a>0 1) calculate f(a) intems of a 2) let g(a) =∫_0 ^∞ (dx/((x^n +a^n )^2 )) calculate g(a) interms of a 3) find the values of integrals ∫_0 ^∞ (dx/(x^8 +16)) and ∫_0 ^∞ (dx/((x^8 +16)^2 )) |
let f(x) =∫_0 ^∞ ((cos(xt))/(x^2 +t^2 )) dt with x>0 1) find f(x) 2) find the values of ∫_0 ^∞ ((cos(t))/(1+t^2 ))dt and ∫_0 ^∞ ((cos(2t))/(4+t^2 ))dt 3) let U_n =∫_0 ^∞ ((cos(nt))/(n^2 +t^2 ))dt find lim_(n→+∞) U_n and study the convergenge of Σ U_n and Σ U_n ^2 |
let f(x)=∫_(−∞) ^(+∞) cos(t^2 +xt +3)dt with x>0 1) find f(x) 2) calculate ∫_1 ^4 f(x)dx and ∫_1 ^(+∞) f(x)dx |
Evaluate : 1) ((∫_0 ^( 1_ ) (1−(1−x^2 )^(100) )^(201) .xdx)/(∫_0 ^( 1) (1−(1−x^2 )^(100) )^(202) .xdx)) = ? 2) ((∫_0 ^( 1) (1−x^(200) )^(201) dx)/(∫_0 ^( 1) (1−x^(200) )^(202) dx)) = ? |
let u_n =∫_(−∞) ^∞ ((sin(nx^2 ))/(x^2 +x +n)) dx 1) calculate u_n 2) find lim_(n→+∞) u_n 3) study the serie Σ u_n |
find the value of ∫_0 ^∞ (((1+x)^(−(1/4)) −(1+x)^(−(3/4)) )/x) dx |
study the convergence of ∫_0 ^∞ (((1+x)^α −(1+x)^β )/x) dx . |
calculate ∫_0 ^∞ ((arctan(ix))/(2+x^2 ))dx |
∫^1 _(−∞) (a+bi)^x dx=? |
∫_(−1) ^0 ∣x sin (πx)∣ dx |
∫_0 ^1 e^(−x^2 ) dx correct to 3 decimal place. |
∫e^(−x^2 ) dx as an infinite series.Hence investigate its converge. |
![]() |
find f(x) =∫_0 ^1 arctan(t^2 +xt +1)dt . |
calculate ∫_(π/3) ^(π/2) (dx/(x+sinx)) |
find ∫_(π/3) ^(π/2) (x/(cosx))dx |
find I =∫ arctan(1−x)dx and J =∫ actan(1+x) dx |
calculate ∫_0 ^1 arctan(x^2 −x)dx |
![]() |
∫_0 ^( π) ((xtan x)/(sec x+tan x))dx = (is it (π^2 /2)−π)? |
Integrate..∫(√(1+(√(1+(√x))))) dx |
How to integrate ∫_0 ^1 ((sec^2 x)/(x(√x))) dx ? |
![]() |
let f(x) =∫_0 ^∞ ((cos(xt))/((xt^2 +i)^2 ))dx with x from R and x≠0 1) find a explicit form of f(x) 2) extract A =Re(f(x)) and B =Im(f(x)) and find its values . 3) calculate ∫_0 ^∞ ((cos(2t))/((2t^2 +i)^2 ))dt 4) let U_n =∫_0 ^∞ ((cos(nt))/((nt^2 +i)^2 ))dt .calculate lim_(n→+∞) u_n and study the convergence of Σu_n |
calculate I =∫_0 ^(2π) ((cost)/(3 +sin(2t)))dt and J =∫_0 ^(2π) ((sint)/(3 +cos(2t)))dt . |
s=∫_0 ^( x) (√(1+(3t^2 +p)^2 ))dt = ? take p=1 for a special case. |
Pg 238 Pg 239 Pg 240 Pg 241 Pg 242 Pg 243 Pg 244 Pg 245 Pg 246 Pg 247 |