Question and Answers Forum |
IntegrationQuestion and Answers: Page 243 |
let f(x) =∫_0 ^(2π) ((sint)/(x+sint))dt 1) calculate f(x) 2) calculate g(x) =∫_0 ^(2π) ((sint)/((x+sint)^2 )) dt 3) calculste for n∈N ∫_0 ^(2π) ((sint)/((x+sint)^n ))dt 4) calculate ∫_0 ^(2π) ((sint)/(2+sint))dt and ∫_0 ^(2π) ((sint)/((2+sint)^2 ))dt . |
prove that ln(z) = ∫_0 ^1 ((z−1)/(1+t(z−1)))dt . |
find ∫_1 ^(+∞) (([t])/t) t^(−p) dt interms of ξ(p) with p>0 . |
![]() |
![]() |
![]() |
![]() |
∫_0 ^( (π/4)) ((sinx+cosx)/(16+9sin2x)) dx =? |
![]() |
the absolute value ∫_(10) ^(19) ((cos x)/(1+x^8 )) dx is... |
Evaluate : 1) ∫_0 ^( 1) (dx/((√(1+x))+(√(1−x))+2)) 2) ∫_0 ^( 2) ((ln(1+2x))/(1+x^2 )) 3) ∫_0 ^( π) (x/(√(1+sin^3 x)))((3πcosx+4sinx)sin^2 x+4)dx 4) ∫_0 ^( π) ((x^2 cos^2 x−xsinx−cosx−1)/((1+xsinx)^2 )) dx. |
![]() |
Evaluate : 1) ∫_(−1) ^( 1) cot^(−1) ((1/(√(1−x^2 )))).(cot^(−1) (x/(√(1−(x^2 )^(∣x∣) ))))dx 2) ∫_0 ^( (π/2)) ((sin^2 (10)θ)/(sin^2 θ)) dθ 3) ∫_0 ^( (π/4)) ((ln(cotx))/(((sinx)^(2009) +(cosx)^(2009) )^2 )).(sin2x)^(2008) dx 4) ∫_0 ^( 2) ((4x+10)/((x^2 +5x+6)^2 )) dx. |
calculate f(a) =∫ (dx/((√(1+ax))−(√(1−ax)))) with a>0 . 2) calculate U_n =∫_(−(1/(na))) ^(1/(na)) (dx/((√(1+ax))−(√(1−ax)))) with n from N and n>1 find lim_(n→+∞) U_n and study the convergence of Σ U_n |
1)calculate A_t =∫_0 ^∞ e^(−xt) sinxdx with x>0 2) by using Fubuni theorem find the value of ∫_0 ^∞ ((sinx)/x)dx . |
let f(x) =xsinx ,2π periodic even developp f at Fourier serie . |
give∫_0 ^1 e^(−x) ln(1−x)dx at form of serie |
calculate ∫_(1/3) ^(1/2) Γ(x)Γ(1−x)dx with Γ(x) =∫_0 ^∞ t^(x−1) e^(−t) dt with x>0 . |
find the value of ∫_0 ^1 ln(x)ln(1−x^2 )dx |
let f(x) = x∣x∣ , 2π periodic odd developp f at fourier serie . |
∫x!dx |
![]() |
let f(x)=∫_0 ^∞ ((tsin(tx))/(1+t^4 ))dt with x>0 1) find a explicit form of f(x) 2) find the value of ∫_0 ^∞ ((tsin(2t))/(1+t^4 ))dt. |
calculate ∫_0 ^∞ (t^2 /(e^t −1))dt interms of ξ(3) |
calculate ∫_0 ^1 (t^2 /(1+t^3 ))dt |
find ∫_(−∞) ^(+∞) e^(−x^2 ) (√(1+2x^2 ))dx |
Pg 238 Pg 239 Pg 240 Pg 241 Pg 242 Pg 243 Pg 244 Pg 245 Pg 246 Pg 247 |