Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 243

Question Number 56345    Answers: 0   Comments: 1

let f(a) =∫_0 ^∞ (dx/(x^n +a^n )) with n integr ≥2 and a>0 1) calculate f(a) intems of a 2) let g(a) =∫_0 ^∞ (dx/((x^n +a^n )^2 )) calculate g(a) interms of a 3) find the values of integrals ∫_0 ^∞ (dx/(x^8 +16)) and ∫_0 ^∞ (dx/((x^8 +16)^2 ))

letf(a)=0dxxn+anwithnintegr2anda>01)calculatef(a)intemsofa2)letg(a)=0dx(xn+an)2calculateg(a)intermsofa3)findthevaluesofintegrals0dxx8+16and0dx(x8+16)2

Question Number 56311    Answers: 0   Comments: 1

let f(x) =∫_0 ^∞ ((cos(xt))/(x^2 +t^2 )) dt with x>0 1) find f(x) 2) find the values of ∫_0 ^∞ ((cos(t))/(1+t^2 ))dt and ∫_0 ^∞ ((cos(2t))/(4+t^2 ))dt 3) let U_n =∫_0 ^∞ ((cos(nt))/(n^2 +t^2 ))dt find lim_(n→+∞) U_n and study the convergenge of Σ U_n and Σ U_n ^2

letf(x)=0cos(xt)x2+t2dtwithx>01)findf(x)2)findthevaluesof0cos(t)1+t2dtand0cos(2t)4+t2dt3)letUn=0cos(nt)n2+t2dtfindlimn+UnandstudytheconvergengeofΣUnandΣUn2

Question Number 56310    Answers: 0   Comments: 2

let f(x)=∫_(−∞) ^(+∞) cos(t^2 +xt +3)dt with x>0 1) find f(x) 2) calculate ∫_1 ^4 f(x)dx and ∫_1 ^(+∞) f(x)dx

letf(x)=+cos(t2+xt+3)dtwithx>01)findf(x)2)calculate14f(x)dxand1+f(x)dx

Question Number 56280    Answers: 2   Comments: 2

Evaluate : 1) ((∫_0 ^( 1_ ) (1−(1−x^2 )^(100) )^(201) .xdx)/(∫_0 ^( 1) (1−(1−x^2 )^(100) )^(202) .xdx)) = ? 2) ((∫_0 ^( 1) (1−x^(200) )^(201) dx)/(∫_0 ^( 1) (1−x^(200) )^(202) dx)) = ?

Evaluate:1)01(1(1x2)100)201.xdx01(1(1x2)100)202.xdx=?2)01(1x200)201dx01(1x200)202dx=?

Question Number 56189    Answers: 0   Comments: 2

let u_n =∫_(−∞) ^∞ ((sin(nx^2 ))/(x^2 +x +n)) dx 1) calculate u_n 2) find lim_(n→+∞) u_n 3) study the serie Σ u_n

letun=sin(nx2)x2+x+ndx1)calculateun2)findlimn+un3)studytheserieΣun

Question Number 56188    Answers: 1   Comments: 0

find the value of ∫_0 ^∞ (((1+x)^(−(1/4)) −(1+x)^(−(3/4)) )/x) dx

findthevalueof0(1+x)14(1+x)34xdx

Question Number 56187    Answers: 0   Comments: 0

study the convergence of ∫_0 ^∞ (((1+x)^α −(1+x)^β )/x) dx .

studytheconvergenceof0(1+x)α(1+x)βxdx.

Question Number 56186    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((arctan(ix))/(2+x^2 ))dx

calculate0arctan(ix)2+x2dx

Question Number 56169    Answers: 1   Comments: 0

∫^1 _(−∞) (a+bi)^x dx=?

1(a+bi)xdx=?

Question Number 56107    Answers: 2   Comments: 1

∫_(−1) ^0 ∣x sin (πx)∣ dx

10xsin(πx)dx

Question Number 56061    Answers: 1   Comments: 0

∫_0 ^1 e^(−x^2 ) dx correct to 3 decimal place.

01ex2dxcorrectto3decimalplace.

Question Number 56060    Answers: 0   Comments: 3

∫e^(−x^2 ) dx as an infinite series.Hence investigate its converge.

ex2dxasaninfiniteseries.Henceinvestigateitsconverge.

Question Number 55999    Answers: 0   Comments: 1

Question Number 55998    Answers: 1   Comments: 1

find f(x) =∫_0 ^1 arctan(t^2 +xt +1)dt .

findf(x)=01arctan(t2+xt+1)dt.

Question Number 55997    Answers: 0   Comments: 0

calculate ∫_(π/3) ^(π/2) (dx/(x+sinx))

calculateπ3π2dxx+sinx

Question Number 55996    Answers: 0   Comments: 1

find ∫_(π/3) ^(π/2) (x/(cosx))dx

findπ3π2xcosxdx

Question Number 55995    Answers: 1   Comments: 1

find I =∫ arctan(1−x)dx and J =∫ actan(1+x) dx

findI=arctan(1x)dxandJ=actan(1+x)dx

Question Number 55994    Answers: 1   Comments: 0

calculate ∫_0 ^1 arctan(x^2 −x)dx

calculate01arctan(x2x)dx

Question Number 55987    Answers: 0   Comments: 0

Question Number 55930    Answers: 2   Comments: 0

∫_0 ^( π) ((xtan x)/(sec x+tan x))dx = (is it (π^2 /2)−π)?

0πxtanxsecx+tanxdx=(isitπ22π)?

Question Number 55873    Answers: 2   Comments: 1

Integrate..∫(√(1+(√(1+(√x))))) dx

Integrate..1+1+xdx

Question Number 55855    Answers: 0   Comments: 1

How to integrate ∫_0 ^1 ((sec^2 x)/(x(√x))) dx ?

Howtointegrate01sec2xxxdx?

Question Number 55834    Answers: 1   Comments: 0

Question Number 55760    Answers: 0   Comments: 3

let f(x) =∫_0 ^∞ ((cos(xt))/((xt^2 +i)^2 ))dx with x from R and x≠0 1) find a explicit form of f(x) 2) extract A =Re(f(x)) and B =Im(f(x)) and find its values . 3) calculate ∫_0 ^∞ ((cos(2t))/((2t^2 +i)^2 ))dt 4) let U_n =∫_0 ^∞ ((cos(nt))/((nt^2 +i)^2 ))dt .calculate lim_(n→+∞) u_n and study the convergence of Σu_n

letf(x)=0cos(xt)(xt2+i)2dxwithxfromRandx01)findaexplicitformoff(x)2)extractA=Re(f(x))andB=Im(f(x))andfinditsvalues.3)calculate0cos(2t)(2t2+i)2dt4)letUn=0cos(nt)(nt2+i)2dt.calculatelimn+unandstudytheconvergenceofΣun

Question Number 55759    Answers: 1   Comments: 0

calculate I =∫_0 ^(2π) ((cost)/(3 +sin(2t)))dt and J =∫_0 ^(2π) ((sint)/(3 +cos(2t)))dt .

calculateI=02πcost3+sin(2t)dtandJ=02πsint3+cos(2t)dt.

Question Number 55702    Answers: 0   Comments: 5

s=∫_0 ^( x) (√(1+(3t^2 +p)^2 ))dt = ? take p=1 for a special case.

s=0x1+(3t2+p)2dt=?takep=1foraspecialcase.

  Pg 238      Pg 239      Pg 240      Pg 241      Pg 242      Pg 243      Pg 244      Pg 245      Pg 246      Pg 247   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com