Question and Answers Forum |
IntegrationQuestion and Answers: Page 245 |
∫_0 ^(π/2) (1/(2+cos x)) dx=... |
∫_(−1/2) ^(1/2) [(((x+1)/(x−1)))^2 +(((x−1)/(x+1)))^2 −2]^(1/2) dx=... |
∫_(−1/2) ^(1/2) ∣xcos ((πx)/2)∣ dx=... |
∫_0 ^1 e^x^2 dx=.. |
let I_λ =∫_0 ^π ((xdx)/(cos^2 x +λ^2 sin^2 x)) with λ real 1) find the value of I_λ 2) calculate ∫_0 ^π ((xdx)/(a^2 cos^2 x +b^2 sin^2 x)) with a and b reals. |
find f(x)=∫_0 ^∞ ((arctan(xt))/(1+t^2 ))dt with x real . |
1)calculate∫_0 ^∞ e^(−xt^2 ) dt with x>0 2) find the value of ∫_0 ^∞ ((e^(−t^2 ) −e^(−2t^2 ) )/t^2 ) dt by using fubinni theorem . |
1)calculate ∫_0 ^∞ e^(−at) dt with a>0 2)by using fubinni theorem find the value of ∫_0 ^∞ ((e^(−t) −e^(−xt) )/t)dt with x>0 . |
1)find f(x)=∫_0 ^1 e^(−2t) ln(1−xt)dt with ∣x∣<1 2) calculate ∫_0 ^1 e^(−2t) ln(1−((t(√2))/2))dt. |
![]() |
1) find f(a) =∫_0 ^1 (dx/((ax+1)(√(x^2 −x+1)))) with a>0 2) calculate f^′ (a) 3)find the value of ∫_0 ^1 ((xdx)/((ax+1)^2 (√(x^2 −x+1)))) 4) calculate ∫_0 ^1 (dx/((2x+1)(√(x^2 −x+1)))) and ∫_0 ^1 ((xdx)/((2x+1)^2 (√(x^2 −x+1)))) |
Let f(x) = ((2x)/(x^2 + 4)) (a) Find ∫_(−b) ^b f(x) dx, for b > 0 (b) Determine ∫_(−∞) ^∞ f(x) dx is convergent or not |
Evaluate : 1) ∫(√((2−x)/(4+x))) dx 2) ∫ (√((x−2)/(x−4))) dx 3) ∫ (√((x−2)(x−4))) dx 4) ∫ (dx/(2sinx+3secx)) . |
If a<∫_0 ^(2π) (1/(10+3 cos x)) dx<b, then the ordered pair (a, b) is |
let A_n =∫_0 ^∞ ((x sin(nx))/((x^2 +n^2 )^2 ))dx with n integr natural not 0 1) find the value of A_n 2) study the convergence of Σ A_n |
let I =∫_(−∞) ^(+∞) ((t+1)/((t^2 −t+1)^2 ))dt find value of I . |
calculate ∫_0 ^π ((1+2sinx)/(3 +2cosx))dx let A =∫_0 ^π ((1+2sinx)/(3 +2cosx))dx changement tan((x/2))=t give A =∫_0 ^∞ ((1+((4t)/(1+t^2 )))/(3+2((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 )) =2 ∫_0 ^∞ ((1+t^2 +4t)/((1+t^2 )^2 (((3+3t^2 +2−2t^2 )/(1+t^2 )))))dt =2 ∫_0 ^∞ ((t^2 +4t +1)/((1+t^2 )(5+t^2 )))dt let decompose F(t)=((t^2 +4t+1)/((t^2 +1)(t^2 +5))) F(t)=((at +b)/(t^2 +1)) +((ct +d)/(t^2 +5)) ⇒(at+b)(t^2 +5)+(ct+d)(t^2 +1) =t^2 +4t +1 ⇒ at^3 +5at +bt^2 +5b +ct^3 +ct +dt^2 +d =t^2 +4t +1 ⇒ (a+c)t^3 +(b+d)t^2 +(5a+c)t +5b +d =t^2 +4t +1 ⇒a+c=0 and b+d=1 and 5a+c =4 and 5b+d =1 ⇒c=−a ⇒a=1 ⇒c=−1 we have d=1−b ⇒5b +1−b =1 ⇒b=0 ⇒d=1 ⇒ F(t)=(t/(t^2 +1)) +((−t +1)/(t^2 +5)) ⇒ A =2 ∫_0 ^∞ F(t)dt =∫_0 ^∞ ((2t)/(t^2 +1))dt +∫_0 ^∞ ((−2t +2)/(t^2 +5))dt =[ln(((t^2 +1)/(t^2 +5)))]_0 ^(+∞) +2 ∫_0 ^∞ (dt/(t^2 +5)) =ln(5) + 2 ∫_0 ^∞ (dt/(t^2 +5)) but ∫_0 ^∞ (dt/(t^2 +5))dt =_(t =(√5)u ) ∫_0 ^∞ (((√5)du)/(5(1+u^2 ))) =(1/(√5)) [artanu]_0 ^(+∞) =(π/(2(√5))) ⇒ A =ln(5) +(π/(2(√5))) . |
![]() |
calculate ∫_0 ^π ((cos^2 x)/(2+3sin(2x)))dx |
∫_0 ^1 (1/((x^3 +1)^(3/2) )) dx=... |
∫_( (π/2) ) ^( ∞) (dx/((5 + x^2 ) tanh^(−1) ((x/3)))) |
∫_0 ^( ∞) ((x ln^2 (x))/(e^x − 1)) dx |
∫ (x^2 /(√(1 + x^4 ))) dx |
∫_( 0) ^( 1) ((x^3 − 1)/((1 + x^2 ) ln x)) dx |
∫arcsin x arccos x dx=? |
∫_0 ^(π/2) sin x (√(sin 2x)) dx=? ∫_(−(π/4)) ^(π/4) cos x (√(cos 2x)) dx=? |
Pg 240 Pg 241 Pg 242 Pg 243 Pg 244 Pg 245 Pg 246 Pg 247 Pg 248 Pg 249 |