Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 245

Question Number 53295    Answers: 1   Comments: 1

∫_0 ^(π/2) (1/(2+cos x)) dx=...

0π212+cosxdx=...

Question Number 53294    Answers: 1   Comments: 0

∫_(−1/2) ^(1/2) [(((x+1)/(x−1)))^2 +(((x−1)/(x+1)))^2 −2]^(1/2) dx=...

1/21/2[(x+1x1)2+(x1x+1)22]1/2dx=...

Question Number 53293    Answers: 1   Comments: 1

∫_(−1/2) ^(1/2) ∣xcos ((πx)/2)∣ dx=...

1/21/2xcosπx2dx=...

Question Number 53292    Answers: 1   Comments: 1

∫_0 ^1 e^x^2 dx=..

01ex2dx=..

Question Number 53285    Answers: 0   Comments: 0

let I_λ =∫_0 ^π ((xdx)/(cos^2 x +λ^2 sin^2 x)) with λ real 1) find the value of I_λ 2) calculate ∫_0 ^π ((xdx)/(a^2 cos^2 x +b^2 sin^2 x)) with a and b reals.

letIλ=0πxdxcos2x+λ2sin2xwithλreal1)findthevalueofIλ2)calculate0πxdxa2cos2x+b2sin2xwithaandbreals.

Question Number 53284    Answers: 0   Comments: 2

find f(x)=∫_0 ^∞ ((arctan(xt))/(1+t^2 ))dt with x real .

findf(x)=0arctan(xt)1+t2dtwithxreal.

Question Number 53271    Answers: 0   Comments: 2

1)calculate∫_0 ^∞ e^(−xt^2 ) dt with x>0 2) find the value of ∫_0 ^∞ ((e^(−t^2 ) −e^(−2t^2 ) )/t^2 ) dt by using fubinni theorem .

1)calculate0ext2dtwithx>02)findthevalueof0et2e2t2t2dtbyusingfubinnitheorem.

Question Number 53270    Answers: 1   Comments: 1

1)calculate ∫_0 ^∞ e^(−at) dt with a>0 2)by using fubinni theorem find the value of ∫_0 ^∞ ((e^(−t) −e^(−xt) )/t)dt with x>0 .

1)calculate0eatdtwitha>02)byusingfubinnitheoremfindthevalueof0etexttdtwithx>0.

Question Number 53261    Answers: 0   Comments: 0

1)find f(x)=∫_0 ^1 e^(−2t) ln(1−xt)dt with ∣x∣<1 2) calculate ∫_0 ^1 e^(−2t) ln(1−((t(√2))/2))dt.

1)findf(x)=01e2tln(1xt)dtwithx∣<12)calculate01e2tln(1t22)dt.

Question Number 53259    Answers: 1   Comments: 0

Question Number 53228    Answers: 0   Comments: 3

1) find f(a) =∫_0 ^1 (dx/((ax+1)(√(x^2 −x+1)))) with a>0 2) calculate f^′ (a) 3)find the value of ∫_0 ^1 ((xdx)/((ax+1)^2 (√(x^2 −x+1)))) 4) calculate ∫_0 ^1 (dx/((2x+1)(√(x^2 −x+1)))) and ∫_0 ^1 ((xdx)/((2x+1)^2 (√(x^2 −x+1))))

1)findf(a)=01dx(ax+1)x2x+1witha>02)calculatef(a)3)findthevalueof01xdx(ax+1)2x2x+14)calculate01dx(2x+1)x2x+1and01xdx(2x+1)2x2x+1

Question Number 53212    Answers: 2   Comments: 21

Let f(x) = ((2x)/(x^2 + 4)) (a) Find ∫_(−b) ^b f(x) dx, for b > 0 (b) Determine ∫_(−∞) ^∞ f(x) dx is convergent or not

Letf(x)=2xx2+4(a)Findbbf(x)dx,forb>0(b)Determinef(x)dxisconvergentornot

Question Number 53119    Answers: 6   Comments: 3

Evaluate : 1) ∫(√((2−x)/(4+x))) dx 2) ∫ (√((x−2)/(x−4))) dx 3) ∫ (√((x−2)(x−4))) dx 4) ∫ (dx/(2sinx+3secx)) .

Evaluate:1)2x4+xdx2)x2x4dx3)(x2)(x4)dx4)dx2sinx+3secx.

Question Number 53118    Answers: 1   Comments: 0

If a<∫_0 ^(2π) (1/(10+3 cos x)) dx<b, then the ordered pair (a, b) is

Ifa<02π110+3cosxdx<b,thentheorderedpair(a,b)is

Question Number 53114    Answers: 0   Comments: 1

let A_n =∫_0 ^∞ ((x sin(nx))/((x^2 +n^2 )^2 ))dx with n integr natural not 0 1) find the value of A_n 2) study the convergence of Σ A_n

letAn=0xsin(nx)(x2+n2)2dxwithnintegrnaturalnot01)findthevalueofAn2)studytheconvergenceofΣAn

Question Number 53113    Answers: 0   Comments: 1

let I =∫_(−∞) ^(+∞) ((t+1)/((t^2 −t+1)^2 ))dt find value of I .

letI=+t+1(t2t+1)2dtfindvalueofI.

Question Number 53112    Answers: 1   Comments: 0

calculate ∫_0 ^π ((1+2sinx)/(3 +2cosx))dx let A =∫_0 ^π ((1+2sinx)/(3 +2cosx))dx changement tan((x/2))=t give A =∫_0 ^∞ ((1+((4t)/(1+t^2 )))/(3+2((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 )) =2 ∫_0 ^∞ ((1+t^2 +4t)/((1+t^2 )^2 (((3+3t^2 +2−2t^2 )/(1+t^2 )))))dt =2 ∫_0 ^∞ ((t^2 +4t +1)/((1+t^2 )(5+t^2 )))dt let decompose F(t)=((t^2 +4t+1)/((t^2 +1)(t^2 +5))) F(t)=((at +b)/(t^2 +1)) +((ct +d)/(t^2 +5)) ⇒(at+b)(t^2 +5)+(ct+d)(t^2 +1) =t^2 +4t +1 ⇒ at^3 +5at +bt^2 +5b +ct^3 +ct +dt^2 +d =t^2 +4t +1 ⇒ (a+c)t^3 +(b+d)t^2 +(5a+c)t +5b +d =t^2 +4t +1 ⇒a+c=0 and b+d=1 and 5a+c =4 and 5b+d =1 ⇒c=−a ⇒a=1 ⇒c=−1 we have d=1−b ⇒5b +1−b =1 ⇒b=0 ⇒d=1 ⇒ F(t)=(t/(t^2 +1)) +((−t +1)/(t^2 +5)) ⇒ A =2 ∫_0 ^∞ F(t)dt =∫_0 ^∞ ((2t)/(t^2 +1))dt +∫_0 ^∞ ((−2t +2)/(t^2 +5))dt =[ln(((t^2 +1)/(t^2 +5)))]_0 ^(+∞) +2 ∫_0 ^∞ (dt/(t^2 +5)) =ln(5) + 2 ∫_0 ^∞ (dt/(t^2 +5)) but ∫_0 ^∞ (dt/(t^2 +5))dt =_(t =(√5)u ) ∫_0 ^∞ (((√5)du)/(5(1+u^2 ))) =(1/(√5)) [artanu]_0 ^(+∞) =(π/(2(√5))) ⇒ A =ln(5) +(π/(2(√5))) .

calculate0π1+2sinx3+2cosxdxletA=0π1+2sinx3+2cosxdxchangementtan(x2)=tgiveA=01+4t1+t23+21t21+t22dt1+t2=201+t2+4t(1+t2)2(3+3t2+22t21+t2)dt=20t2+4t+1(1+t2)(5+t2)dtletdecomposeF(t)=t2+4t+1(t2+1)(t2+5)F(t)=at+bt2+1+ct+dt2+5(at+b)(t2+5)+(ct+d)(t2+1)=t2+4t+1at3+5at+bt2+5b+ct3+ct+dt2+d=t2+4t+1(a+c)t3+(b+d)t2+(5a+c)t+5b+d=t2+4t+1a+c=0andb+d=1and5a+c=4and5b+d=1c=aa=1c=1wehaved=1b5b+1b=1b=0d=1F(t)=tt2+1+t+1t2+5A=20F(t)dt=02tt2+1dt+02t+2t2+5dt=[ln(t2+1t2+5)]0++20dtt2+5=ln(5)+20dtt2+5but0dtt2+5dt=t=5u05du5(1+u2)=15[artanu]0+=π25A=ln(5)+π25.

Question Number 53081    Answers: 3   Comments: 0

Question Number 53080    Answers: 1   Comments: 1

calculate ∫_0 ^π ((cos^2 x)/(2+3sin(2x)))dx

calculate0πcos2x2+3sin(2x)dx

Question Number 53078    Answers: 1   Comments: 1

∫_0 ^1 (1/((x^3 +1)^(3/2) )) dx=...

011(x3+1)3/2dx=...

Question Number 53089    Answers: 0   Comments: 0

∫_( (π/2) ) ^( ∞) (dx/((5 + x^2 ) tanh^(−1) ((x/3))))

π2dx(5+x2)tanh1(x3)

Question Number 52999    Answers: 0   Comments: 6

∫_0 ^( ∞) ((x ln^2 (x))/(e^x − 1)) dx

0xln2(x)ex1dx

Question Number 52988    Answers: 1   Comments: 0

∫ (x^2 /(√(1 + x^4 ))) dx

x21+x4dx

Question Number 52944    Answers: 1   Comments: 0

∫_( 0) ^( 1) ((x^3 − 1)/((1 + x^2 ) ln x)) dx

01x31(1+x2)lnxdx

Question Number 52898    Answers: 1   Comments: 0

∫arcsin x arccos x dx=?

arcsinxarccosxdx=?

Question Number 52900    Answers: 3   Comments: 0

∫_0 ^(π/2) sin x (√(sin 2x)) dx=? ∫_(−(π/4)) ^(π/4) cos x (√(cos 2x)) dx=?

π20sinxsin2xdx=?π4π4cosxcos2xdx=?

  Pg 240      Pg 241      Pg 242      Pg 243      Pg 244      Pg 245      Pg 246      Pg 247      Pg 248      Pg 249   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com