Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 246

Question Number 53963    Answers: 0   Comments: 1

let f(x) = x∣x∣ , 2π periodic odd developp f at fourier serie .

letf(x)=xx,2πperiodicodddeveloppfatfourierserie.

Question Number 53931    Answers: 0   Comments: 1

∫x!dx

x!dx

Question Number 53843    Answers: 1   Comments: 0

Question Number 53785    Answers: 0   Comments: 1

let f(x)=∫_0 ^∞ ((tsin(tx))/(1+t^4 ))dt with x>0 1) find a explicit form of f(x) 2) find the value of ∫_0 ^∞ ((tsin(2t))/(1+t^4 ))dt.

letf(x)=0tsin(tx)1+t4dtwithx>01)findaexplicitformoff(x)2)findthevalueof0tsin(2t)1+t4dt.

Question Number 53783    Answers: 1   Comments: 0

calculate ∫_0 ^∞ (t^2 /(e^t −1))dt interms of ξ(3)

calculate0t2et1dtintermsofξ(3)

Question Number 53782    Answers: 1   Comments: 0

calculate ∫_0 ^1 (t^2 /(1+t^3 ))dt

calculate01t21+t3dt

Question Number 53624    Answers: 0   Comments: 0

find ∫_(−∞) ^(+∞) e^(−x^2 ) (√(1+2x^2 ))dx

find+ex21+2x2dx

Question Number 53623    Answers: 1   Comments: 3

1) study the function f(x)=ln(x+1−(√x)) 2) determine f^(−1) (x) 3) cslculate ∫ f(x)dx snd ∫ f^(−1) (x)dx 4) dtermine ∫ f^(−1) (x^2 +f(x))dx

1)studythefunctionf(x)=ln(x+1x)2)determinef1(x)3)cslculatef(x)dxsndf1(x)dx4)dterminef1(x2+f(x))dx

Question Number 53601    Answers: 1   Comments: 0

calculate ∫_0 ^∞ ((e^(−x^2 ) −e^(−x) )/x) dx .

calculate0ex2exxdx.

Question Number 53600    Answers: 0   Comments: 1

calculate A_m =∫_0 ^∞ ((sin(mx))/(e^(2πx) −1)) dx with m>0

calculateAm=0sin(mx)e2πx1dxwithm>0

Question Number 53599    Answers: 0   Comments: 1

1) calculate A_n =∫_0 ^∞ (x^(n−1) /(e^x +1)) dx with n integr natural (n≥2) 2) find the value of ∫_0 ^∞ (x/(e^x +1))dx

1)calculateAn=0xn1ex+1dxwithnintegrnatural(n2)2)findthevalueof0xex+1dx

Question Number 53483    Answers: 0   Comments: 9

Question Number 53477    Answers: 1   Comments: 1

let f(a)=∫_0 ^1 (dt/((√(x+a)) +3)) 1) calculate f(a) 2) find also ∫_0 ^1 (dt/((√(x+a))((√(x+a)) +3)^2 )) 3) find the values of integrals ∫_0 ^1 (dt/((√(x+1))+3)) and ∫_0 ^1 (dt/((√(x+1))((√(x+1))+3)^2 ))

letf(a)=01dtx+a+31)calculatef(a)2)findalso01dtx+a(x+a+3)23)findthevaluesofintegrals01dtx+1+3and01dtx+1(x+1+3)2

Question Number 53476    Answers: 0   Comments: 0

let f(x)=∫_0 ^x t(√(2t−1))dt calculate ∣sup_(1≤x≤2) f(x) −inf_(1≤x≤2) f(x)∣

letf(x)=0xt2t1dtcalculatesup1x2f(x)inf1x2f(x)

Question Number 53474    Answers: 1   Comments: 0

calculate ∫_0 ^1 ((5^(2x+1) −2^(2x−1) )/(10^x )) dx

calculate0152x+122x110xdx

Question Number 53471    Answers: 1   Comments: 3

1)find U_n = ∫_0 ^(π/4) tan^n tdt with n integr . 2) find lim_(n→+∞) U_n 3) calculate Σ_(n=0) ^∞ U_n

1)findUn=0π4tanntdtwithnintegr.2)findlimn+Un3)calculaten=0Un

Question Number 53470    Answers: 0   Comments: 1

find Vn=∫_(1/n) ^((an−1)/n) ((√x)/(√(a−(√x)+x)))dx

findVn=1nan1nxax+xdx

Question Number 53467    Answers: 1   Comments: 0

let A_(n m) =∫_0 ^1 x^n (1−x)^m dx with n and n integrs naturals 1) calculate A_(n m) by using factoriels 2) find Σ_(n,m) A_(nm)

letAnm=01xn(1x)mdxwithnandnintegrsnaturals1)calculateAnmbyusingfactoriels2)findn,mAnm

Question Number 53465    Answers: 1   Comments: 1

find ∫_(−(π/2)) ^(π/2) (√(cosx −cos^3 x))dx

findπ2π2cosxcos3xdx

Question Number 53464    Answers: 1   Comments: 1

let U_n = (((∫_0 ^n e^(−x^2 ) dx)^2 )/(∫_0 ^n e^(−nx^2 ) dx)) 1) calculate lim_(n→+∞) U_n 2) determne nature of Σ U_n and Σ U_n ^3 .

letUn=(0nex2dx)20nenx2dx1)calculatelimn+Un2)determnenatureofΣUnandΣUn3.

Question Number 53463    Answers: 1   Comments: 1

1)let 0<θ<(π/2) and A(θ) =∫_0 ^(π/2) (dx/(√(x^2 +2sinθ x +1))) calculate A(θ) 2) calculate ∫_0 ^(π/2) (dx/(√(x^2 +(√2)x +1)))

1)let0<θ<π2andA(θ)=0π2dxx2+2sinθx+1calculateA(θ)2)calculate0π2dxx2+2x+1

Question Number 53462    Answers: 1   Comments: 0

find ∫_(−(π/4)) ^(π/4) ((xsinx)/(cos^2 x))dx

findπ4π4xsinxcos2xdx

Question Number 53536    Answers: 1   Comments: 0

If [x] stands for the gratest integer function the value of ∫_4 ^(10) (([x^2 ])/([x^2 −28x+196]+[x^2 ])) dx is

If[x]standsforthegratestintegerfunctionthevalueof410[x2][x228x+196]+[x2]dxis

Question Number 53418    Answers: 0   Comments: 1

find ∫_0 ^π (x/(2+cosx sinx))dx

find0πx2+cosxsinxdx

Question Number 53378    Answers: 1   Comments: 0

if u=e^(xyz) then u_(xyx) =? a)u((xyz)^2 +3xyz+1) b)u(3(xyz)^2 +1) c)u((xyz)^2 +2yz+1) please help

ifu=exyzthenuxyx=?a)u((xyz)2+3xyz+1)b)u(3(xyz)2+1)c)u((xyz)2+2yz+1)pleasehelp

Question Number 53295    Answers: 1   Comments: 1

∫_0 ^(π/2) (1/(2+cos x)) dx=...

0π212+cosxdx=...

  Pg 241      Pg 242      Pg 243      Pg 244      Pg 245      Pg 246      Pg 247      Pg 248      Pg 249      Pg 250   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com