Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 247

Question Number 53080    Answers: 1   Comments: 1

calculate ∫_0 ^π ((cos^2 x)/(2+3sin(2x)))dx

calculate0πcos2x2+3sin(2x)dx

Question Number 53078    Answers: 1   Comments: 1

∫_0 ^1 (1/((x^3 +1)^(3/2) )) dx=...

011(x3+1)3/2dx=...

Question Number 53089    Answers: 0   Comments: 0

∫_( (π/2) ) ^( ∞) (dx/((5 + x^2 ) tanh^(−1) ((x/3))))

π2dx(5+x2)tanh1(x3)

Question Number 52999    Answers: 0   Comments: 6

∫_0 ^( ∞) ((x ln^2 (x))/(e^x − 1)) dx

0xln2(x)ex1dx

Question Number 52988    Answers: 1   Comments: 0

∫ (x^2 /(√(1 + x^4 ))) dx

x21+x4dx

Question Number 52944    Answers: 1   Comments: 0

∫_( 0) ^( 1) ((x^3 − 1)/((1 + x^2 ) ln x)) dx

01x31(1+x2)lnxdx

Question Number 52898    Answers: 1   Comments: 0

∫arcsin x arccos x dx=?

arcsinxarccosxdx=?

Question Number 52900    Answers: 3   Comments: 0

∫_0 ^(π/2) sin x (√(sin 2x)) dx=? ∫_(−(π/4)) ^(π/4) cos x (√(cos 2x)) dx=?

π20sinxsin2xdx=?π4π4cosxcos2xdx=?

Question Number 52703    Answers: 0   Comments: 1

let f(t) =∫_0 ^∞ ((cos^2 (tx))/((x^2 +3)^2 )) dx with t ≥0 1) give a explicit form of f(t) 2) find the value of ∫_0 ^∞ ((xsin(2tx))/((x^2 +3)^2 )) dx 3) give the values of integrals ∫_0 ^∞ (dx/((x^2 +3)^2 )) and ∫_0 ^∞ ((cos^2 (πx))/((x^2 +3)^2 ))dx 4) give the values of integrals ∫_0 ^∞ ((xsin(πx))/((x^2 +3)^2 )) and ∫_0 ^∞ ((xsin(((πx)/2)))/((x^2 +3)^2 )) dx .

letf(t)=0cos2(tx)(x2+3)2dxwitht01)giveaexplicitformoff(t)2)findthevalueof0xsin(2tx)(x2+3)2dx3)givethevaluesofintegrals0dx(x2+3)2and0cos2(πx)(x2+3)2dx4)givethevaluesofintegrals0xsin(πx)(x2+3)2and0xsin(πx2)(x2+3)2dx.

Question Number 52683    Answers: 0   Comments: 3

let f(λ) =∫_(−∞) ^(+∞) ((sin(λx))/((x^2 +2λx +1)^2 ))dx with ∣λ∣<1 1) find the value of f(λ) 2) calculate ∫_(−∞) ^(+∞) ((sin((x/(2 ))))/((x^2 +x+1)^2 ))dx 3) find A(θ) =∫_(−∞) ^(+∞) ((sin((cosθ)x))/((x^2 +2cosθ x +1)^2 )) that we suppose 0<θ<(π/2)

letf(λ)=+sin(λx)(x2+2λx+1)2dxwithλ∣<11)findthevalueoff(λ)2)calculate+sin(x2)(x2+x+1)2dx3)findA(θ)=+sin((cosθ)x)(x2+2cosθx+1)2thatwesuppose0<θ<π2

Question Number 52680    Answers: 0   Comments: 1

let f_n (x)=((sin(nx))/n^3 ) and f(x)=Σ_(n=1) ^∞ f_n (x) calculate ∫_0 ^π f(x)dx .

letfn(x)=sin(nx)n3andf(x)=n=1fn(x)calculate0πf(x)dx.

Question Number 52667    Answers: 1   Comments: 0

∫((x^4 +1)/(x^2 (√(x^4 −1)))) dx

x4+1x2x41dx

Question Number 52649    Answers: 0   Comments: 2

∫ ((4x^2 + 3)/((x^2 + x + 1)^2 )) dx

4x2+3(x2+x+1)2dx

Question Number 52550    Answers: 1   Comments: 1

∫_0 ^( ∞) (x/(e^x − 1)) dx

0xex1dx

Question Number 52484    Answers: 2   Comments: 0

∫ ((cos x − x sin x)/(x cos x)) dx

cosxxsinxxcosxdx

Question Number 52482    Answers: 0   Comments: 2

find the value or ∫_0 ^∞ ((arctan(x^2 ))/(1+x^4 ))dx .

findthevalueor0arctan(x2)1+x4dx.

Question Number 52459    Answers: 0   Comments: 2

let f(α)=∫_0 ^1 ((ln(1+iαx))/(1+x^2 ))dx 1)determine a explicit form of f(α) 2) calculate ∫_0 ^1 ((ln(1+ix))/(1+x^2 ))dx and ∫_0 ^1 ((ln(1+2ix))/(1+x^2 ))dx.

letf(α)=01ln(1+iαx)1+x2dx1)determineaexplicitformoff(α)2)calculate01ln(1+ix)1+x2dxand01ln(1+2ix)1+x2dx.

Question Number 52418    Answers: 0   Comments: 1

find the value of ∫_0 ^∞ ((arctan(x))/(1+x^4 )) dx

findthevalueof0arctan(x)1+x4dx

Question Number 52363    Answers: 2   Comments: 0

integrate ((sin^2 xcos^2 x )/(sin^3 x+cos^3 x))dx

integratesin2xcos2xsin3x+cos3xdx

Question Number 52356    Answers: 1   Comments: 8

Question Number 52233    Answers: 3   Comments: 0

please can you help me with this caculus: ∫(1/(cos^2 x)) dx

pleasecanyouhelpmewiththiscaculus:1cos2xdx

Question Number 52197    Answers: 1   Comments: 0

calculate ∫_(π/4) ^(π/3) ((cosx −sinx)/(2 +sin(2x)))dx

calculateπ4π3cosxsinx2+sin(2x)dx

Question Number 52164    Answers: 2   Comments: 4

find: ∫_0 ^Π (cos^6 θ −cos^4 θ) dθ plase help me in cinding this And also explain if possible

find:Π0(cos6θcos4θ)dθplasehelpmeincindingthisAndalsoexplainifpossible

Question Number 52089    Answers: 0   Comments: 0

Question Number 51998    Answers: 0   Comments: 1

let U ={(x,y)∈R^2 / 1≤x^2 +2y^2 ≤3} calculate ∫∫_U ((x−y)/(x^2 +y^2 ))dxdxy

letU={(x,y)R2/1x2+2y23}calculateUxyx2+y2dxdxy

Question Number 51997    Answers: 1   Comments: 2

let f(x)=∫_0 ^(π/2) (dt/(1+xsint)) with x>−1 1) calculate f(o) ,f(1) and f(2) 2) give f at form of function

letf(x)=0π2dt1+xsintwithx>11)calculatef(o),f(1)andf(2)2)givefatformoffunction

  Pg 242      Pg 243      Pg 244      Pg 245      Pg 246      Pg 247      Pg 248      Pg 249      Pg 250      Pg 251   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com