Question and Answers Forum |
IntegrationQuestion and Answers: Page 247 |
calculate ∫_0 ^π ((cos^2 x)/(2+3sin(2x)))dx |
∫_0 ^1 (1/((x^3 +1)^(3/2) )) dx=... |
∫_( (π/2) ) ^( ∞) (dx/((5 + x^2 ) tanh^(−1) ((x/3)))) |
∫_0 ^( ∞) ((x ln^2 (x))/(e^x − 1)) dx |
∫ (x^2 /(√(1 + x^4 ))) dx |
∫_( 0) ^( 1) ((x^3 − 1)/((1 + x^2 ) ln x)) dx |
∫arcsin x arccos x dx=? |
∫_0 ^(π/2) sin x (√(sin 2x)) dx=? ∫_(−(π/4)) ^(π/4) cos x (√(cos 2x)) dx=? |
let f(t) =∫_0 ^∞ ((cos^2 (tx))/((x^2 +3)^2 )) dx with t ≥0 1) give a explicit form of f(t) 2) find the value of ∫_0 ^∞ ((xsin(2tx))/((x^2 +3)^2 )) dx 3) give the values of integrals ∫_0 ^∞ (dx/((x^2 +3)^2 )) and ∫_0 ^∞ ((cos^2 (πx))/((x^2 +3)^2 ))dx 4) give the values of integrals ∫_0 ^∞ ((xsin(πx))/((x^2 +3)^2 )) and ∫_0 ^∞ ((xsin(((πx)/2)))/((x^2 +3)^2 )) dx . |
let f(λ) =∫_(−∞) ^(+∞) ((sin(λx))/((x^2 +2λx +1)^2 ))dx with ∣λ∣<1 1) find the value of f(λ) 2) calculate ∫_(−∞) ^(+∞) ((sin((x/(2 ))))/((x^2 +x+1)^2 ))dx 3) find A(θ) =∫_(−∞) ^(+∞) ((sin((cosθ)x))/((x^2 +2cosθ x +1)^2 )) that we suppose 0<θ<(π/2) |
let f_n (x)=((sin(nx))/n^3 ) and f(x)=Σ_(n=1) ^∞ f_n (x) calculate ∫_0 ^π f(x)dx . |
∫((x^4 +1)/(x^2 (√(x^4 −1)))) dx |
∫ ((4x^2 + 3)/((x^2 + x + 1)^2 )) dx |
∫_0 ^( ∞) (x/(e^x − 1)) dx |
∫ ((cos x − x sin x)/(x cos x)) dx |
find the value or ∫_0 ^∞ ((arctan(x^2 ))/(1+x^4 ))dx . |
let f(α)=∫_0 ^1 ((ln(1+iαx))/(1+x^2 ))dx 1)determine a explicit form of f(α) 2) calculate ∫_0 ^1 ((ln(1+ix))/(1+x^2 ))dx and ∫_0 ^1 ((ln(1+2ix))/(1+x^2 ))dx. |
find the value of ∫_0 ^∞ ((arctan(x))/(1+x^4 )) dx |
integrate ((sin^2 xcos^2 x )/(sin^3 x+cos^3 x))dx |
![]() |
please can you help me with this caculus: ∫(1/(cos^2 x)) dx |
calculate ∫_(π/4) ^(π/3) ((cosx −sinx)/(2 +sin(2x)))dx |
find: ∫_0 ^Π (cos^6 θ −cos^4 θ) dθ plase help me in cinding this And also explain if possible |
![]() |
let U ={(x,y)∈R^2 / 1≤x^2 +2y^2 ≤3} calculate ∫∫_U ((x−y)/(x^2 +y^2 ))dxdxy |
let f(x)=∫_0 ^(π/2) (dt/(1+xsint)) with x>−1 1) calculate f(o) ,f(1) and f(2) 2) give f at form of function |
Pg 242 Pg 243 Pg 244 Pg 245 Pg 246 Pg 247 Pg 248 Pg 249 Pg 250 Pg 251 |