Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 250

Question Number 49938    Answers: 0   Comments: 1

find f(x)=∫_0 ^(π/4) ln(cost+xsint)dt

findf(x)=0π4ln(cost+xsint)dt

Question Number 49922    Answers: 1   Comments: 0

Question Number 49902    Answers: 1   Comments: 1

If F(t)= ∫_0 ^( t) e^(t−y) .ydy. Prove that F(t)= e^t −(1+t).

IfF(t)=0tety.ydy.ProvethatF(t)=et(1+t).

Question Number 49903    Answers: 1   Comments: 1

Question Number 49898    Answers: 0   Comments: 1

Question Number 49838    Answers: 1   Comments: 1

∫(dx/(√((a+1)cos 2x +4cos x −a+3)))=?

dx(a+1)cos2x+4cosxa+3=?

Question Number 49829    Answers: 1   Comments: 1

∫(x^2 /(x^4 +1))dx

x2x4+1dx

Question Number 49827    Answers: 1   Comments: 4

The integral ∫_0 ^(1/2) ((ln (1+2x))/(1+4x^2 ))dx = ? a) (π/4)ln2 b)(π/8)ln2 c)(π/(16))ln2 d)(π/(32))ln2

Theintegral012ln(1+2x)1+4x2dx=?a)π4ln2b)π8ln2c)π16ln2d)π32ln2

Question Number 49816    Answers: 2   Comments: 0

((sin^6 x−cos^6 x)/(sin^2 xcos^2 x)).intregrate

sin6xcos6xsin2xcos2x.intregrate

Question Number 49815    Answers: 0   Comments: 3

sin^6 x−cos^6 x/sin^2 xcos^2 x

sin6xcos6x/sin2xcos2x

Question Number 49806    Answers: 0   Comments: 1

let f(x) =∫_0 ^(π/4) ln(1−x^2 cosθ)dθ with ∣x∣<1 1) find a explicit form of f(x) 2) calculate ∫_0 ^(π/4) ln(1−(1/4)cosθ)dθ .

letf(x)=0π4ln(1x2cosθ)dθwithx∣<11)findaexplicitformoff(x)2)calculate0π4ln(114cosθ)dθ.

Question Number 49761    Answers: 1   Comments: 0

Calculate : ∫(( sin^2 x cos^2 x)/((sin^3 x+cos^3 x)^2 )) dx

Calculate:sin2xcos2x(sin3x+cos3x)2dx

Question Number 49760    Answers: 0   Comments: 3

Question Number 49746    Answers: 1   Comments: 0

∫((sin^8 x−cos^8 x)/(1−2sin^2 x.cos^2 x)) = ? a) ((−1)/2)sin 2x b)(1/2)sin 2x c)None.

sin8xcos8x12sin2x.cos2x=?a)12sin2xb)12sin2xc)None.

Question Number 49708    Answers: 0   Comments: 0

Please integrate ∫(((e^(cos x) sin x)/(1−x^2 )))dx

Pleaseintegrate(ecosxsinx1x2)dx

Question Number 49661    Answers: 1   Comments: 2

calculateA_n =(1/(2i)) ∫_0 ^1 {(1+ix)^n −(1−ix)^n }dx

calculateAn=12i01{(1+ix)n(1ix)n}dx

Question Number 49646    Answers: 0   Comments: 0

calculate ∫∫_D (x^2 −y^2 )(√(x^2 +y^2 ))dxdy with D ={(x,y)∈R^2 / −1≤x≤1 and 0≤y≤2 }

calculateD(x2y2)x2+y2dxdywithD={(x,y)R2/1x1and0y2}

Question Number 49645    Answers: 1   Comments: 0

calculate ∫∫_C ∣x+y∣dxdy with C=[−1,1]×[−1,1]

calculateCx+ydxdywithC=[1,1]×[1,1]

Question Number 49636    Answers: 1   Comments: 2

1) calculate A_n =∫_0 ^∞ e^(−n[x]) sin(x)dx with n integr and n≥1 2) find nature of Σ_(n=1) ^∞ A_n

1)calculateAn=0en[x]sin(x)dxwithnintegrandn12)findnatureofn=1An

Question Number 49635    Answers: 1   Comments: 1

1)find f(x) =∫_0 ^(π/4) ((sint)/(2+x cos(2t)))dt 2) find g(x) =∫_0 ^(π/4) ((sint sin(2t)/((2+x cos(2t))^2 ))dx 3) find the value of ∫_0 ^(π/4) ((sint)/(2+3 cos(2t)))dt and ∫_0 ^(π/4) ((sin(t)sin(2t))/((2+3cos(2t))^2 ))dt

1)findf(x)=0π4sint2+xcos(2t)dt2)findg(x)=0π4sintsin(2t(2+xcos(2t))2dx3)findthevalueof0π4sint2+3cos(2t)dtand0π4sin(t)sin(2t)(2+3cos(2t))2dt

Question Number 49457    Answers: 0   Comments: 0

evaluate ∫x^(3 ) J_3 (x)dx

evaluatex3J3(x)dx

Question Number 49392    Answers: 1   Comments: 0

Question Number 49367    Answers: 5   Comments: 5

a) ∫ (dx/(√(1−tgx))) b)∫ (dx/((1−tgx))^(1/3) ) c)∫ (dx/(√(1−(√(1−x)))))

a)dx1tgxb)dx1tgx3c)dx11x

Question Number 49344    Answers: 1   Comments: 1

let α>0 calculate ∫_(−∞) ^(+∞) (1+αi)^(−x^2 ) dx .

letα>0calculate+(1+αi)x2dx.

Question Number 49343    Answers: 0   Comments: 1

find ∫_0 ^1 ((ln(x))/(1+x))dx .

find01ln(x)1+xdx.

Question Number 49342    Answers: 0   Comments: 0

find ∫_0 ^1 (e^x /(1+x))dx .

find01ex1+xdx.

  Pg 245      Pg 246      Pg 247      Pg 248      Pg 249      Pg 250      Pg 251      Pg 252      Pg 253      Pg 254   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com