Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 256

Question Number 47058    Answers: 1   Comments: 0

calculate ∫_0 ^1 ((1+x^3 )/(1+x^4 ))dx

calculate011+x31+x4dx

Question Number 47026    Answers: 4   Comments: 4

Question Number 47018    Answers: 1   Comments: 1

find ∫ (√(x+2−(√(x−1))))dx

findx+2x1dx

Question Number 47098    Answers: 1   Comments: 8

prove that:lim_(n→∞) ∫_(−1) ^1 (1+(t/n))^n dt = e−(1/e).

provethat:limn11(1+tn)ndt=e1e.

Question Number 46898    Answers: 2   Comments: 2

∫((tanx)/((tanx+1)^2 −2tan^2 x ))dx=??

tanx(tanx+1)22tan2xdx=??

Question Number 46856    Answers: 0   Comments: 1

find f(t) =∫_0 ^1 x^2 arctan(1+tx)dx

findf(t)=01x2arctan(1+tx)dx

Question Number 46855    Answers: 0   Comments: 1

calculate ∫_0 ^1 x arctan(1+x)dx

calculate01xarctan(1+x)dx

Question Number 46854    Answers: 1   Comments: 1

find =∫_0 ^π ((sinx)/(2+cos(2x)))dx

find=0πsinx2+cos(2x)dx

Question Number 46853    Answers: 1   Comments: 1

fnd ∫ (dx/(1+cos(tx)))

fnddx1+cos(tx)

Question Number 46851    Answers: 0   Comments: 3

let f(x)=∫_0 ^(2π) ((sint)/(x +sint))dt withx>1 1) calculate f(x) 2) calculate ∫_0 ^(2π) ((sint)/((x+sint)^2 ))dt 3)find the value of ∫_0 ^(2π) ((sint)/(2+sint))dt and ∫_0 ^(2π) ((sint)/((2+sint)^2 ))dt

letf(x)=02πsintx+sintdtwithx>11)calculatef(x)2)calculate02πsint(x+sint)2dt3)findthevalueof02πsint2+sintdtand02πsint(2+sint)2dt

Question Number 46850    Answers: 1   Comments: 1

let a^2 >b^(2 ) +c^2 calculate ∫_0 ^(2π) (dθ/(a+bsinθ +c cosθ))

leta2>b2+c2calculate02πdθa+bsinθ+ccosθ

Question Number 46849    Answers: 0   Comments: 0

let A_p =Σ_(n=1) ^∞ n^p x^n with p integr . and x ∈]−1,1[ . 1) calculate A_1 ,A_2 and A_3 2) find a relation of recurrence betwen the A_n 3) calculate Σ_(n=1) ^∞ n^4 x^n and Σ_(n=1) ^∞ n^5 x^n .

letAp=n=1npxnwithpintegr.andx]1,1[.1)calculateA1,A2andA32)findarelationofrecurrencebetwentheAn3)calculaten=1n4xnandn=1n5xn.

Question Number 46848    Answers: 0   Comments: 1

caculate ∫∫_D (x^2 −y^2 ) e^(−x^2 −y^2 ) dxdy with D ={(x,y)∈R^2 / x^2 +y^2 ≤4}

caculateD(x2y2)ex2y2dxdywithD={(x,y)R2/x2+y24}

Question Number 46847    Answers: 0   Comments: 1

calculate ∫∫_(0≤x≤1 and 1≤y≤2) e^(x/y) dxdy

calculate0x1and1y2exydxdy

Question Number 46846    Answers: 0   Comments: 1

calculate ∫∫_D ((x+y)/(√(1−x^2 −y^2 )))dxdy with D={(x,y)∈R^2 /x≥0,y≥0,x^2 +y^2 <1}

calculateDx+y1x2y2dxdywithD={(x,y)R2/x0,y0,x2+y2<1}

Question Number 46845    Answers: 0   Comments: 0

calculate ∫_0 ^1 (e^(−x) /(1+x)) dx .

calculate01ex1+xdx.

Question Number 46844    Answers: 0   Comments: 1

calculate ∫_0 ^∞ e^(−2t) ln(1+3t)dt

calculate0e2tln(1+3t)dt

Question Number 46843    Answers: 0   Comments: 0

let f(x)= ∫_0 ^x (t/(sin(t)))dt 1) find a explicit form of f(x) 2) calculate ∫_0 ^(π/2) (t/(sint))dt

letf(x)=0xtsin(t)dt1)findaexplicitformoff(x)2)calculate0π2tsintdt

Question Number 46842    Answers: 1   Comments: 1

find ∫ (dx/(x(√(x−x^2 ))))

finddxxxx2

Question Number 46841    Answers: 1   Comments: 1

calculate ∫_(π/4) ^(π/3) (dx/(cosx sinx))

calculateπ4π3dxcosxsinx

Question Number 46838    Answers: 1   Comments: 0

Question Number 46837    Answers: 0   Comments: 1

find∫(√(sin2x)) dx=??

findsin2xdx=??

Question Number 46833    Answers: 0   Comments: 1

Question Number 46748    Answers: 0   Comments: 0

∫(√(sin2x)) dx=??

sin2xdx=??

Question Number 46740    Answers: 1   Comments: 2

find ∫ x(√((1−(√x))/(1+(√x))))dx

findx1x1+xdx

Question Number 46720    Answers: 0   Comments: 6

  Pg 251      Pg 252      Pg 253      Pg 254      Pg 255      Pg 256      Pg 257      Pg 258      Pg 259      Pg 260   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com