Question and Answers Forum |
IntegrationQuestion and Answers: Page 27 |
![]() |
If, y= (( Arcsin((√x) ))/( (√( x (1−x ))))) ⇒ y′ .p(x) + y .q(x)= 1 find , ∫_0 ^( 1) p(x).q(x)dx=? p , q are two pllynomils... |
![]() |
![]() |
evaluate ∫_0 ^π (dx/(a+bcosx )) , a > 0 and deduce that ∫_0 ^π (dx/((a+bcos x)^2 )) = ((πa)/((a^2 −b^2 )^(3/2) )) ; a^2 >b^2 and ∫_0 ^π ((cos x dx)/((a+bcos x)^2 )) = ((−πb)/((a^2 −b^2 )^(3/2) )) ; a^2 >b^2 |
∫_0 ^(π/4) arctan((√((1−tan^2 x)/2)))dx = ? |
if ∫_0 ^∞ e^(−ax) dx = (1/a) show that ∫_0 ^∞ e^(−ax) x^n dx = ((n!)/a^(n+1) ) |
Advanced calculus Find the value of the following series. Ω = Σ_(n=1) ^∞ (( (−1)^( n) ζ ( n ))/(n. 2^( n) )) = ? ζ ( z ) = Σ_( n=1) ^∞ (( 1)/(n^( z) )) ; Re ( z )>1 |
![]() |
prove that ∫_0 ^∞ e^(−a^2 x^2 ) cos(2bx) dx = ((√π)/(2a))e^(−b^2 /a^2 ) |
![]() |
I = ∫_0 ^∞ ((tan^(−1) (x/a))/(x(x^2 +b^2 )))dx |
∫2^x e^x dx |
solve ∫(x^2 /((a+bx)^2 ))dx |
solve ∫((x^2 +3)/(x^6 (x^2 +1)))dx |
prove that ∫_0 ^(π/2) ∫_0 ^(π/2) (((sin3x)/(sin2y)))^(1/3) dxdy=(π/(2(√3))) |
∫ ((1−cos x)/(cos x+sin x−1)) dx=? |
![]() |
solve ∫((x^4 +x^2 +1)/(2(x^2 +1)))dx |
∫ (1/(5x^2 − 2x − 4)) dx |
Find minimum area of the part y=x^2 and y=kx(x^2 −k), k>0 |
∫_(1/4) ^(1/2) ((sin^(−1) ((√x))−cos^(−1) ((√x)))/(sin^(−1) ((√x))+cos^(−1) ((√x)))) dx=? |
∫_0 ^∞ x^2 e^(−x) dx=? |
∫(dx/( (√(a^2 +be^(cx) ))))=? |
∫x^2 ∙sin^(−1) (x)dx=? |
∫_((9π)/2) ^((7π)/(1.5)) (dx/( (√(1−sinx))))=? |