Question and Answers Forum |
IntegrationQuestion and Answers: Page 275 |
1) decompose inside C(x) the fraction F(x)= (3/(4+x^4 )) 2) find ∫_(−∞) ^(+∞) (dx/(x−z)) with z from C 3) find the value of ∫_(−∞) ^(+∞) ((3dx)/(4+x^4 )) . |
calculate lim_(x→0) ∫_(x+1) ^(x^2 +1) ln(1+t) e^(−t) dt |
find lim_(ξ→0) ∫_0 ^1 (dx/((√(1+ξx^2 ))−(√(1−ξx^2 )))) |
calculate ∫_0 ^(+∞) ((ln(1+ix^2 ))/(2+x^2 ))dx |
calculate ∫_0 ^(π/6) ∣ cos(2x)−cos(3x)∣dx |
find ∫ ((ln(x+(√(x^2 −1))))/(√(x^2 −1))) dx 2) calculate ∫_2 ^5 ((ln(x+(√(x^2 −1)))/(√(x^2 −1)))dx |
let I_n = ∫_0 ^1 x^n (√(1−x)) dx 1) calculate I_0 and I_1 2) prove that ∀n∈ N^★ (3+2n) I_n =2n I_(n−1) 3) find I_n interms of n |
calculste I_λ = ∫_(−∞) ^(+∞) ((cos(λx^n ))/(1+x^2 )) dx with λ from R and n integr natural 2) find the vslue of ∫_(−∞) ^(+∞) ((cos(3 x^9 ))/(1+x^2 )) dx . |
calculate ∫_(−∞) ^(+∞) ((cos(x^n ) +sin(x^n ))/((x^2 +9)^n )) dx |
calculate ∫_(−∞) ^(+∞) (x^n /((1+x^2 )^n )) dx with n natral integr |
![]() |
let S_n = ∫_0 ^n ((x(−1)^([x]) )/((x+1 −[x])^3 ))dx 1) calculate S_n 2) find lim_(n→+∞) S_n |
find the value of f(x) = ∫_0 ^π ln(x^2 −2x cosθ +1)dθ with x fromR. |
lim_(n→∞) [ (1/(n^2 +1))+ (2/(n^2 +2))+ (3/(n^2 +3))+ ....+(1/(n+1))] = ? |
∫_(1/4) ^( 4) (1/x) sin (x−(1/x))dx = ? |
f(x)= ∫_0 ^( x_ ) e^(t ) (((1+sin t)/(1+cos t))) dt. Then f((π/3))×f(((2π)/3)) = ? |
∫2^x 3^(2x) dx=? |
∫_0 ^(2π) e^(x/2) sin ((x/2)+(π/4))dx = ? |
find f(t)= ∫_0 ^1 ((ln(1+xt))/(1+x^2 )) dx . |
calculate F(x) = ∫_0 ^∞ (dt/(1+(1+x(1+t^2 ))^2 )) |
find the value of ∫_0 ^1 ((ln(1+x))/(1+x^2 ))dx |
The values of a for which y= ax^2 +ax+(1/(24)) and x = ay^2 +ay+(1/(24)) touch each other are 1) (2/3) 2) (3/2) 3) ((13+(√(601)))/(12)) 4) ((13−(√(601)))/(12)). |
calculate ∫_0 ^(π/3) ((sinxdx)/(cosx(2+ln(cosx))) . |
![]() |
![]() |
![]() |
Pg 270 Pg 271 Pg 272 Pg 273 Pg 274 Pg 275 Pg 276 Pg 277 Pg 278 Pg 279 |