Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 275

Question Number 39967    Answers: 0   Comments: 4

1) decompose inside C(x) the fraction F(x)= (3/(4+x^4 )) 2) find ∫_(−∞) ^(+∞) (dx/(x−z)) with z from C 3) find the value of ∫_(−∞) ^(+∞) ((3dx)/(4+x^4 )) .

1)decomposeinsideC(x)thefractionF(x)=34+x42)find+dxxzwithzfromC3)findthevalueof+3dx4+x4.

Question Number 39840    Answers: 0   Comments: 1

calculate lim_(x→0) ∫_(x+1) ^(x^2 +1) ln(1+t) e^(−t) dt

calculatelimx0x+1x2+1ln(1+t)etdt

Question Number 39838    Answers: 0   Comments: 1

find lim_(ξ→0) ∫_0 ^1 (dx/((√(1+ξx^2 ))−(√(1−ξx^2 ))))

findlimξ001dx1+ξx21ξx2

Question Number 39836    Answers: 0   Comments: 0

calculate ∫_0 ^(+∞) ((ln(1+ix^2 ))/(2+x^2 ))dx

calculate0+ln(1+ix2)2+x2dx

Question Number 39834    Answers: 1   Comments: 0

calculate ∫_0 ^(π/6) ∣ cos(2x)−cos(3x)∣dx

calculate0π6cos(2x)cos(3x)dx

Question Number 39833    Answers: 2   Comments: 1

find ∫ ((ln(x+(√(x^2 −1))))/(√(x^2 −1))) dx 2) calculate ∫_2 ^5 ((ln(x+(√(x^2 −1)))/(√(x^2 −1)))dx

findln(x+x21)x21dx2)calculate25ln(x+x21x21dx

Question Number 40139    Answers: 0   Comments: 3

let I_n = ∫_0 ^1 x^n (√(1−x)) dx 1) calculate I_0 and I_1 2) prove that ∀n∈ N^★ (3+2n) I_n =2n I_(n−1) 3) find I_n interms of n

letIn=01xn1xdx1)calculateI0andI12)provethatnN(3+2n)In=2nIn13)findInintermsofn

Question Number 39787    Answers: 0   Comments: 2

calculste I_λ = ∫_(−∞) ^(+∞) ((cos(λx^n ))/(1+x^2 )) dx with λ from R and n integr natural 2) find the vslue of ∫_(−∞) ^(+∞) ((cos(3 x^9 ))/(1+x^2 )) dx .

calculsteIλ=+cos(λxn)1+x2dxwithλfromRandnintegrnatural2)findthevslueof+cos(3x9)1+x2dx.

Question Number 39712    Answers: 1   Comments: 3

calculate ∫_(−∞) ^(+∞) ((cos(x^n ) +sin(x^n ))/((x^2 +9)^n )) dx

calculate+cos(xn)+sin(xn)(x2+9)ndx

Question Number 39711    Answers: 0   Comments: 1

calculate ∫_(−∞) ^(+∞) (x^n /((1+x^2 )^n )) dx with n natral integr

calculate+xn(1+x2)ndxwithnnatralintegr

Question Number 39706    Answers: 0   Comments: 0

Question Number 39660    Answers: 0   Comments: 2

let S_n = ∫_0 ^n ((x(−1)^([x]) )/((x+1 −[x])^3 ))dx 1) calculate S_n 2) find lim_(n→+∞) S_n

letSn=0nx(1)[x](x+1[x])3dx1)calculateSn2)findlimn+Sn

Question Number 39633    Answers: 0   Comments: 3

find the value of f(x) = ∫_0 ^π ln(x^2 −2x cosθ +1)dθ with x fromR.

findthevalueoff(x)=0πln(x22xcosθ+1)dθwithxfromR.

Question Number 39443    Answers: 1   Comments: 3

lim_(n→∞) [ (1/(n^2 +1))+ (2/(n^2 +2))+ (3/(n^2 +3))+ ....+(1/(n+1))] = ?

limn[1n2+1+2n2+2+3n2+3+....+1n+1]=?

Question Number 39441    Answers: 0   Comments: 2

∫_(1/4) ^( 4) (1/x) sin (x−(1/x))dx = ?

1441xsin(x1x)dx=?

Question Number 39440    Answers: 1   Comments: 0

f(x)= ∫_0 ^( x_ ) e^(t ) (((1+sin t)/(1+cos t))) dt. Then f((π/3))×f(((2π)/3)) = ?

f(x)=0xet(1+sint1+cost)dt.Thenf(π3)×f(2π3)=?

Question Number 39477    Answers: 1   Comments: 3

∫2^x 3^(2x) dx=?

2x32xdx=?

Question Number 39431    Answers: 1   Comments: 1

∫_0 ^(2π) e^(x/2) sin ((x/2)+(π/4))dx = ?

02πex2sin(x2+π4)dx=?

Question Number 39483    Answers: 0   Comments: 3

find f(t)= ∫_0 ^1 ((ln(1+xt))/(1+x^2 )) dx .

findf(t)=01ln(1+xt)1+x2dx.

Question Number 39389    Answers: 0   Comments: 2

calculate F(x) = ∫_0 ^∞ (dt/(1+(1+x(1+t^2 ))^2 ))

calculateF(x)=0dt1+(1+x(1+t2))2

Question Number 39386    Answers: 1   Comments: 1

find the value of ∫_0 ^1 ((ln(1+x))/(1+x^2 ))dx

findthevalueof01ln(1+x)1+x2dx

Question Number 39384    Answers: 2   Comments: 0

The values of a for which y= ax^2 +ax+(1/(24)) and x = ay^2 +ay+(1/(24)) touch each other are 1) (2/3) 2) (3/2) 3) ((13+(√(601)))/(12)) 4) ((13−(√(601)))/(12)).

Thevaluesofaforwhichy=ax2+ax+124andx=ay2+ay+124toucheachotherare1)232)323)13+601124)1360112.

Question Number 39383    Answers: 1   Comments: 1

calculate ∫_0 ^(π/3) ((sinxdx)/(cosx(2+ln(cosx))) .

calculate0π3sinxdxcosx(2+ln(cosx).

Question Number 39382    Answers: 1   Comments: 0

Question Number 39381    Answers: 1   Comments: 0

Question Number 39379    Answers: 1   Comments: 6

  Pg 270      Pg 271      Pg 272      Pg 273      Pg 274      Pg 275      Pg 276      Pg 277      Pg 278      Pg 279   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com