Question and Answers Forum |
IntegrationQuestion and Answers: Page 276 |
calculate interms of n A_n = ∫_0 ^(2π) ((cos(nx))/(cosx +sinx))dx and B_n = ∫_0 ^(2π) ((sin(nx))/(cosx +sinx))dx . |
calculate ∫_(−∞) ^(+∞) ((xsin(2x))/((1+x^2 )^2 ))dx |
let f(x)= ((cos(αx))/(cosx)) (2π periodic even) developp f at fourier serie. |
find the value of I = ∫_0 ^1 ((arctan(2x))/(√(1+4x^2 ))) dx |
let g(x)= ∫_(−∞) ^(+∞) ((arctan(x(1+t^2 )))/(1+t^2 ))dt with x>0 find a simple form of g(x) . |
calculate ∫_0 ^1 ((ln(1+(√(x^2 +1))))/(√(x^2 +1))) dx |
calculate ∫ (dx/((x^2 +1)(x^2 +2)(x^2 +3))) 1) find the value of ∫_0 ^∞ (dx/((x^2 +1)(x^2 +2)(x^2 +3))) |
find ∫ ((−2x+3)/(x^2 ( x^3 +8)))dx 2) calculate ∫_1 ^(+∞) ((−2x+3)/(x^2 (x^3 +8)))dx |
calculate ∫_0 ^π ((sin(nx))/(cosx))dx with n from N . |
find ∫ (dx/(x(2x+1)(3x+2))) 2) calculate ∫_1 ^2 (dx/(x(2x+1)(3x+2))) |
find ∫ arcos(2(√(1−x^2 )))dx . |
find ∫_0 ^π ln(2+cost)dt and ∫_0 ^π ln(2−cost)dt |
find ∫ ln((√x) +(√(x+1)) +(√(x+2)))dx |
let A_n = ∫_0 ^n ((x[x])/(1+x^2 )) dx 1) calculate A_n 2) find lim_(n→+∞) A_n |
1) let f(x) = ∫_0 ^∞ (dt/(1+x^2 t^4 )) with x >0 find a simple form of f(x) 2) calculate ∫_0 ^(+∞) (dt/(1+t^4 )) 3) calculate ∫_0 ^∞ (dt/(1+3t^4 )) |
let A_n = ∫_0 ^n (((−1)^x )/(2[x] +1))dx 1) calculate A_n 2) find lim_(n→+∞) A_n |
∫((3−5(√(1−(1/x)))))^(1/3) dx=? ∫(1/((3−5(√(1−(1/x)))))^(1/3) )dx=? |
this is still waiting to be solved... ∫((√((t−1)t(t+1)))/(3t^2 −4))dt=? |
find L ( (e^(−(x/a)) /a)) with a≠0 and L laplace transfom. |
let n from N and A_n = ∫_(−∞) ^(+∞) ((cos(ax))/((x^2 +x+1)^n ))dx and B_n = ∫_(−∞) ^(+∞) ((sin(ax))/((x^2 +x+1)^n ))dx find the value of A_(n ) and B_n . |
calculate ∫_0 ^∞ ((x^2 cos(πx))/((x^2 +4)^2 ))dx |
1) find f(x)=∫_0 ^π ln(2+x cosθ)dθ 2) calculate ∫_0 ^π ln(2 +cosθ)dθ |
find ∫ (((√(x+1)) −(√(x−1)))/((√(x+1)) −(√(x−1))))dx |
find ∫ ln((√x) +(√(x+1)))dx |
calculate ∫_2 ^5 (dx/((x +1−[x])^2 )) |
calculate ∫_1 ^6 (((−1)^([x]) )/(1+x^2 [x]))dx |
Pg 271 Pg 272 Pg 273 Pg 274 Pg 275 Pg 276 Pg 277 Pg 278 Pg 279 Pg 280 |