Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 276

Question Number 39034    Answers: 0   Comments: 1

calculate interms of n A_n = ∫_0 ^(2π) ((cos(nx))/(cosx +sinx))dx and B_n = ∫_0 ^(2π) ((sin(nx))/(cosx +sinx))dx .

calculateintermsofnAn=02πcos(nx)cosx+sinxdxandBn=02πsin(nx)cosx+sinxdx.

Question Number 39033    Answers: 0   Comments: 2

calculate ∫_(−∞) ^(+∞) ((xsin(2x))/((1+x^2 )^2 ))dx

calculate+xsin(2x)(1+x2)2dx

Question Number 39025    Answers: 0   Comments: 1

let f(x)= ((cos(αx))/(cosx)) (2π periodic even) developp f at fourier serie.

letf(x)=cos(αx)cosx(2πperiodiceven)developpfatfourierserie.

Question Number 39024    Answers: 0   Comments: 2

find the value of I = ∫_0 ^1 ((arctan(2x))/(√(1+4x^2 ))) dx

findthevalueofI=01arctan(2x)1+4x2dx

Question Number 39023    Answers: 0   Comments: 1

let g(x)= ∫_(−∞) ^(+∞) ((arctan(x(1+t^2 )))/(1+t^2 ))dt with x>0 find a simple form of g(x) .

letg(x)=+arctan(x(1+t2))1+t2dtwithx>0findasimpleformofg(x).

Question Number 39020    Answers: 1   Comments: 0

calculate ∫_0 ^1 ((ln(1+(√(x^2 +1))))/(√(x^2 +1))) dx

calculate01ln(1+x2+1)x2+1dx

Question Number 39019    Answers: 1   Comments: 3

calculate ∫ (dx/((x^2 +1)(x^2 +2)(x^2 +3))) 1) find the value of ∫_0 ^∞ (dx/((x^2 +1)(x^2 +2)(x^2 +3)))

calculatedx(x2+1)(x2+2)(x2+3)1)findthevalueof0dx(x2+1)(x2+2)(x2+3)

Question Number 39017    Answers: 0   Comments: 1

find ∫ ((−2x+3)/(x^2 ( x^3 +8)))dx 2) calculate ∫_1 ^(+∞) ((−2x+3)/(x^2 (x^3 +8)))dx

find2x+3x2(x3+8)dx2)calculate1+2x+3x2(x3+8)dx

Question Number 39016    Answers: 0   Comments: 0

calculate ∫_0 ^π ((sin(nx))/(cosx))dx with n from N .

calculate0πsin(nx)cosxdxwithnfromN.

Question Number 39015    Answers: 0   Comments: 2

find ∫ (dx/(x(2x+1)(3x+2))) 2) calculate ∫_1 ^2 (dx/(x(2x+1)(3x+2)))

finddxx(2x+1)(3x+2)2)calculate12dxx(2x+1)(3x+2)

Question Number 38946    Answers: 0   Comments: 0

find ∫ arcos(2(√(1−x^2 )))dx .

findarcos(21x2)dx.

Question Number 38899    Answers: 0   Comments: 4

find ∫_0 ^π ln(2+cost)dt and ∫_0 ^π ln(2−cost)dt

find0πln(2+cost)dtand0πln(2cost)dt

Question Number 38897    Answers: 0   Comments: 0

find ∫ ln((√x) +(√(x+1)) +(√(x+2)))dx

findln(x+x+1+x+2)dx

Question Number 38896    Answers: 1   Comments: 2

let A_n = ∫_0 ^n ((x[x])/(1+x^2 )) dx 1) calculate A_n 2) find lim_(n→+∞) A_n

letAn=0nx[x]1+x2dx1)calculateAn2)findlimn+An

Question Number 39030    Answers: 2   Comments: 3

1) let f(x) = ∫_0 ^∞ (dt/(1+x^2 t^4 )) with x >0 find a simple form of f(x) 2) calculate ∫_0 ^(+∞) (dt/(1+t^4 )) 3) calculate ∫_0 ^∞ (dt/(1+3t^4 ))

1)letf(x)=0dt1+x2t4withx>0findasimpleformoff(x)2)calculate0+dt1+t43)calculate0dt1+3t4

Question Number 38804    Answers: 1   Comments: 3

let A_n = ∫_0 ^n (((−1)^x )/(2[x] +1))dx 1) calculate A_n 2) find lim_(n→+∞) A_n

letAn=0n(1)x2[x]+1dx1)calculateAn2)findlimn+An

Question Number 39029    Answers: 2   Comments: 0

∫((3−5(√(1−(1/x)))))^(1/3) dx=? ∫(1/((3−5(√(1−(1/x)))))^(1/3) )dx=?

3511x3dx=?13511x3dx=?

Question Number 38746    Answers: 0   Comments: 3

this is still waiting to be solved... ∫((√((t−1)t(t+1)))/(3t^2 −4))dt=?

thisisstillwaitingtobesolved...(t1)t(t+1)3t24dt=?

Question Number 38728    Answers: 0   Comments: 1

find L ( (e^(−(x/a)) /a)) with a≠0 and L laplace transfom.

findL(exaa)witha0andLlaplacetransfom.

Question Number 38727    Answers: 0   Comments: 2

let n from N and A_n = ∫_(−∞) ^(+∞) ((cos(ax))/((x^2 +x+1)^n ))dx and B_n = ∫_(−∞) ^(+∞) ((sin(ax))/((x^2 +x+1)^n ))dx find the value of A_(n ) and B_n .

letnfromNandAn=+cos(ax)(x2+x+1)ndxandBn=+sin(ax)(x2+x+1)ndxfindthevalueofAnandBn.

Question Number 38724    Answers: 0   Comments: 2

calculate ∫_0 ^∞ ((x^2 cos(πx))/((x^2 +4)^2 ))dx

calculate0x2cos(πx)(x2+4)2dx

Question Number 38718    Answers: 0   Comments: 3

1) find f(x)=∫_0 ^π ln(2+x cosθ)dθ 2) calculate ∫_0 ^π ln(2 +cosθ)dθ

1)findf(x)=0πln(2+xcosθ)dθ2)calculate0πln(2+cosθ)dθ

Question Number 38720    Answers: 0   Comments: 2

find ∫ (((√(x+1)) −(√(x−1)))/((√(x+1)) −(√(x−1))))dx

findx+1x1x+1x1dx

Question Number 38719    Answers: 1   Comments: 0

find ∫ ln((√x) +(√(x+1)))dx

findln(x+x+1)dx

Question Number 38716    Answers: 1   Comments: 1

calculate ∫_2 ^5 (dx/((x +1−[x])^2 ))

calculate25dx(x+1[x])2

Question Number 38714    Answers: 1   Comments: 1

calculate ∫_1 ^6 (((−1)^([x]) )/(1+x^2 [x]))dx

calculate16(1)[x]1+x2[x]dx

  Pg 271      Pg 272      Pg 273      Pg 274      Pg 275      Pg 276      Pg 277      Pg 278      Pg 279      Pg 280   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com