Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 278

Question Number 38651    Answers: 1   Comments: 0

If ∫_0 ^1 e^(−x^2 ) dx = a , then find the value of ∫_0 ^1 x^2 e^(−x^2 ) dx in terms of ′a′ ?

If01ex2dx=a,thenfindthevalueof01x2ex2dxintermsofa?

Question Number 38536    Answers: 2   Comments: 0

∫_0 ^π (dx/(√(3−cos x)))=

0πdx3cosx=

Question Number 38516    Answers: 3   Comments: 1

∫_0 ^(π/2) ∣sin x − cos x∣dx

0π2sinxcosxdx

Question Number 38470    Answers: 0   Comments: 4

calculate f(t)=∫_0 ^∞ ((cos(tx))/((1+tx^2 )^2 )) dx with t≥0 2) find the values of ∫_0 ^∞ ((cos(2x))/((1+2x^2 )^2 ))dx and ∫_0 ^∞ ((cosx)/((2+x^2 )^2 ))dx

calculatef(t)=0cos(tx)(1+tx2)2dxwitht02)findthevaluesof0cos(2x)(1+2x2)2dxand0cosx(2+x2)2dx

Question Number 38469    Answers: 0   Comments: 1

calculate f(a) = ∫_(−∞) ^(+∞) ((sin(ax))/(x^2 +x+1))dx 2) find the value of ∫_(−∞) ^(+∞) ((sin(3x))/(x^2 +x+1))dx

calculatef(a)=+sin(ax)x2+x+1dx2)findthevalueof+sin(3x)x2+x+1dx

Question Number 38468    Answers: 0   Comments: 1

calculate ∫_(−∞) ^(+∞) ((sin(2x)sh(3x))/(4+x^2 ))dx

calculate+sin(2x)sh(3x)4+x2dx

Question Number 38467    Answers: 0   Comments: 1

calculate ∫_(−∞) ^(+∞) ((cos(ax)ch(bx))/(x^2 +1))dx .

calculate+cos(ax)ch(bx)x2+1dx.

Question Number 38466    Answers: 0   Comments: 1

let a from R find F_a (t)= ∫_(−∞) ^(+∞) ((cos(tx))/(a^2 +x^2 ))dx 2) calculate F_2 (3) and F_3 (2)

letafromRfindFa(t)=+cos(tx)a2+x2dx2)calculateF2(3)andF3(2)

Question Number 38465    Answers: 0   Comments: 2

find f(x)= ∫_0 ^1 ln(1+xt^3 )dt with ∣x∣<1 . 2) calculate ∫_0 ^1 ln(1+4t^3 )dt and ∫_0 ^1 ln(2+t^3 )dt.

findf(x)=01ln(1+xt3)dtwithx∣<1.2)calculate01ln(1+4t3)dtand01ln(2+t3)dt.

Question Number 38464    Answers: 0   Comments: 1

let f(x)= ∫_0 ^1 ((ln(1−x^2 t^2 ))/t^2 )dt with ∣x∣<1 find f(x) at a simple form .

letf(x)=01ln(1x2t2)t2dtwithx∣<1findf(x)atasimpleform.

Question Number 38463    Answers: 0   Comments: 1

calculate I = ∫_0 ^1 ((ln (1−(t^2 /4)))/t^2 )dt

calculateI=01ln(1t24)t2dt

Question Number 38462    Answers: 0   Comments: 0

find ∫_1 ^(+∞) arctan(x −(1/x))dx

find1+arctan(x1x)dx

Question Number 38461    Answers: 0   Comments: 0

find f(x) = ∫_0 ^∞ arctan(1+e^(−xt) )dt with x>0 2) find ∫_0 ^∞ arctan(1+e^(−2t) )dt.

findf(x)=0arctan(1+ext)dtwithx>02)find0arctan(1+e2t)dt.

Question Number 38453    Answers: 0   Comments: 4

find f(x)=∫_0 ^∞ ((1−cos(xt))/t) e^(−xt) dt with x>0 1) find asimple form of f(x) 2) calculate ∫_0 ^∞ ((1−cos(πt))/t) e^(−t) dt 3)calculate ∫_0 ^∞ ((1−cos(3t))/t) e^(−2t) dt

findf(x)=01cos(xt)textdtwithx>01)findasimpleformoff(x)2)calculate01cos(πt)tetdt3)calculate01cos(3t)te2tdt

Question Number 38451    Answers: 1   Comments: 1

new attempt to solve qu. 37630 ∫(dx/((√x)+(√(x+1))+(√(x+2))))= [t=x+1 → dx=dt] =∫(dt/((√(t−1))+(√t)+(√(t+1))))= [((to omit the roots)),(((√a)+(√b)+(√c) must be multiplied with)),(((−(√a)−(√b)+(√c))(−(√a)+(√b)−(√c))((√a)−(√b)−(√c)))),(((1/((√a)+(√b)+(√c)))=((a^(3/2) +b^(3/2) +c^(3/2) +2(√(abc))−((a+b)(√c)+(a+c)(√b)+(b+c)(√a)))/(a^2 +b^2 +c^2 −2(ab+ac+bc))))) ] =∫((t(√(t−1))+t(√t)+t(√(t+1))+2(√(t−1))−2(√(t+1))−2(√((t−1)t(t+1))))/(3t^2 −4))dt= =∫((t(√(t−1)))/(3t^2 −4))dt+∫((t(√t))/(3t^2 −4))dt+∫((t(√(t+1)))/(3t^2 −4))dt+2∫((√(t−1))/(3t^2 −4))dt−2∫((√(t+1))/(3t^2 −4))−2∫((√((t−1)t(t+1)))/(3t^2 −4))dt I think I can solve them all except the last one so please somebody try ∫((√((t−1)t(t+1)))/(3t^2 −4))dt=? I will do the others tomorrow

newattempttosolvequ.37630dxx+x+1+x+2=[t=x+1dx=dt]=dtt1+t+t+1=[toomittherootsa+b+cmustbemultipliedwith(ab+c)(a+bc)(abc)1a+b+c=a3/2+b3/2+c3/2+2abc((a+b)c+(a+c)b+(b+c)a)a2+b2+c22(ab+ac+bc)]=tt1+tt+tt+1+2t12t+12(t1)t(t+1)3t24dt==tt13t24dt+tt3t24dt+tt+13t24dt+2t13t24dt2t+13t242(t1)t(t+1)3t24dtIthinkIcansolvethemallexceptthelastonesopleasesomebodytry(t1)t(t+1)3t24dt=?Iwilldotheotherstomorrow

Question Number 38460    Answers: 0   Comments: 1

let ∣x∣>1 find the value of F(x)=∫_0 ^∞ ln(1+xt^2 )dt 2)calculate ∫_0 ^∞ ln(1+3t^2 )dt .

letx∣>1findthevalueofF(x)=0ln(1+xt2)dt2)calculate0ln(1+3t2)dt.

Question Number 38458    Answers: 0   Comments: 3

let ∣x∣<1 calculate F(x)=∫_0 ^1 ln(1+xt^2 )dt 2) find the value of ∫_0 ^1 ln(1 +(1/2)t^2 )dt 3)find the value of A(θ) =∫_0 ^1 ln(1+sinθ t^2 )dt .

letx∣<1calculateF(x)=01ln(1+xt2)dt2)findthevalueof01ln(1+12t2)dt3)findthevalueofA(θ)=01ln(1+sinθt2)dt.

Question Number 38457    Answers: 0   Comments: 0

f is a C^2 function prove that 1)L(f^′ )=x L(f)−f(0^+ ) 2)L(f^(′′) )=x^2 L(f) −xf(0^+ )−f^′ (0^+ ) L means Laplace transform.

fisaC2functionprovethat1)L(f)=xL(f)f(0+)2)L(f)=x2L(f)xf(0+)f(0+)LmeansLaplacetransform.

Question Number 38454    Answers: 0   Comments: 3

let f(x)=∫_0 ^∞ ((1−cos(xt^2 ))/t^2 ) e^(−xt^2 ) dt with x>0 1) find a simple form of f(x) 2) calculate ∫_0 ^∞ ((1−cos(2t^2 ))/t^2 ) e^(−3t^2 ) dt .

letf(x)=01cos(xt2)t2ext2dtwithx>01)findasimpleformoff(x)2)calculate01cos(2t2)t2e3t2dt.

Question Number 38405    Answers: 1   Comments: 2

If f(3)=3;f(1)=2 ⇒∫_1 ^3 f(x)f^′ (x)dx=.....

Iff(3)=3;f(1)=213f(x)f(x)dx=.....

Question Number 38397    Answers: 2   Comments: 2

evaluate ∫secxdx

evaluatesecxdx

Question Number 38384    Answers: 0   Comments: 1

∫x^(−3cosx) dx please is this possible? If possibld then prove it. Thanks in advance.

x3cosxdxpleaseisthispossible?Ifpossibldthenproveit.Thanksinadvance.

Question Number 38310    Answers: 1   Comments: 4

let f(x)=∫_0 ^(+∞) ((arctan(xt))/(1+t^2 ))dt with x≥0 1) calculate f^′ (x) then a simple form of f(x) 2) calculate ∫_0 ^(+∞) ((arctant)/(1+t^2 ))dt 3) calculate ∫_0 ^(+∞) ((arctan(2t))/(1+t^2 ))dt

letf(x)=0+arctan(xt)1+t2dtwithx01)calculatef(x)thenasimpleformoff(x)2)calculate0+arctant1+t2dt3)calculate0+arctan(2t)1+t2dt

Question Number 38211    Answers: 0   Comments: 2

let x>0 and F(x)= ∫_0 ^(+∞) ((arctan(xt^2 ))/(1+t^2 ))dt 1) find a simple form of F(x) 2)find the value of ∫_0 ^∞ ((arctan(2t^2 ))/(1+t^2 ))dt 3)find the value of ∫_0 ^∞ ((arctan(3t^2 ))/(1+t^2 ))dt.

letx>0andF(x)=0+arctan(xt2)1+t2dt1)findasimpleformofF(x)2)findthevalueof0arctan(2t2)1+t2dt3)findthevalueof0arctan(3t2)1+t2dt.

Question Number 38210    Answers: 2   Comments: 4

let f(a)= ∫_0 ^π (dθ/(a +sin^2 θ)) (a from R) 1) find f(a) 2)calculate g(a)= ∫_0 ^π (dθ/((a+sin^2 θ)^2 )) 3)calculate ∫_0 ^π (dθ/(1+sin^2 θ)) and ∫_0 ^π (dθ/(2+sin^2 θ)) 4) calculate ∫_0 ^π (dθ/((3 +sin^2 θ)^2 )) .

letf(a)=0πdθa+sin2θ(afromR)1)findf(a)2)calculateg(a)=0πdθ(a+sin2θ)23)calculate0πdθ1+sin2θand0πdθ2+sin2θ4)calculate0πdθ(3+sin2θ)2.

Question Number 38209    Answers: 0   Comments: 2

let f(x)=e^(−x) cosx developp f at fourier serie 1) find the value of Σ_(n=−∞) ^(+∞) (((−1)^n )/(1+n^2 )) 2) calculate Σ_(n=0) ^∞ (1/(n^2 +1)) .

letf(x)=excosxdeveloppfatfourierserie1)findthevalueofn=+(1)n1+n22)calculaten=01n2+1.

  Pg 273      Pg 274      Pg 275      Pg 276      Pg 277      Pg 278      Pg 279      Pg 280      Pg 281      Pg 282   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com