Question and Answers Forum |
IntegrationQuestion and Answers: Page 279 |
let p>1 calculate ∫_0 ^(2π) (dt/((p +cost)^2 )) |
find lim_(x→0) ((e^x −[x])/x) |
let x from R find the value of f(x)= ∫_0 ^π ln(x^2 −2x cosθ +1)dθ |
find C = Σ_(n=1) ^∞ ((cos(nx))/n^2 )dx and S=Σ_(n=1) ^∞ ((sin(nx))/n^2 ) |
calculate ∫_0 ^(+∞) e^(−3t) ln(1+e^t )dt . |
find ∫ (dx/((√(2x+1)) +(√(2x−1)))) |
find ∫_1 ^(+∞) (dx/((x^2 +2)(√(x+3)))) |
find I(λ)= ∫_0 ^(π/2) ((xdx)/(λ +tanx)) λ from R. |
let B_n = ∫_0 ^n e^(−(x−[x])^2 ) dx 1) calculate B_n 2) find lim_(n→+∞) B_n |
let A_n = ∫_0 ^n e^(x−[x]) dx 1) calculate A_n 2) find lim_(n→+∞) A_n |
let A_n = ∫_0 ^n (x−[x])^2 dx 1) calculate A_n 2) find lim_(n→+∞) A_n |
∫(dx/(a+btan^2 x)) = ? |
∫((tan x)/(a+btan^2 x)) dx = ? |
∫((cos 5x+cos 4x)/(1−2cos 3x))dx = ? |
calculate ∫_0 ^∞ (dx/(x^(2 ) +(√(1+x^2 )))) . |
![]() |
f : N → R g : N → R f(n)=∫_0 ^(2π) x^n sin x dx g(n)=∫_0 ^(2π) x^n cos x dx ((f(n+1)−f(n))/(g(n+1)−g(n)))=? |
Evaluate : the Integral ∫_(-(π/2)) ^(π/2) ∫_0 ^(3 cos θ) r^2 sin^2 θ. dr dθ |
ind the value of f(a) =∫_0 ^(+∞) (dx/(x^2 +(√(a^2 +x^2 )))) dx witha>0 2)calculate f^′ (a) . |
calculate f(λ) = ∫_0 ^(+∞) e^(−λx) cos(π[x])dx withλ>0 |
let I_n = ∫_0 ^n (((−1)^([x]) )/((2x+1)^2 ))dx 1) calculate I_n interms of n 2) find lim_(n→+∞) I_n |
calculate A_n =∫_0 ^n (x−[(√x)])dx and lim_(n→+∞) A_n |
calculate ∫_0 ^1 (√(x+(√(x+1)))) dx . |
calculate ∫_0 ^∞ ((arctan(2x))/x) e^(−tx) dx with t ≥0 |
find f(α) = ∫_0 ^1 arctan(e^(−αx) )dx with α≥0 |
find f(α) = ∫_0 ^1 arctan(1+e^(−αx) )dx with α≥0 |
Pg 274 Pg 275 Pg 276 Pg 277 Pg 278 Pg 279 Pg 280 Pg 281 Pg 282 Pg 283 |