Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 279

Question Number 38113    Answers: 0   Comments: 2

let p>1 calculate ∫_0 ^(2π) (dt/((p +cost)^2 ))

letp>1calculate02πdt(p+cost)2

Question Number 38111    Answers: 1   Comments: 1

find lim_(x→0) ((e^x −[x])/x)

findlimx0ex[x]x

Question Number 38110    Answers: 0   Comments: 0

let x from R find the value of f(x)= ∫_0 ^π ln(x^2 −2x cosθ +1)dθ

letxfromRfindthevalueoff(x)=0πln(x22xcosθ+1)dθ

Question Number 38107    Answers: 0   Comments: 0

find C = Σ_(n=1) ^∞ ((cos(nx))/n^2 )dx and S=Σ_(n=1) ^∞ ((sin(nx))/n^2 )

findC=n=1cos(nx)n2dxandS=n=1sin(nx)n2

Question Number 38106    Answers: 0   Comments: 1

calculate ∫_0 ^(+∞) e^(−3t) ln(1+e^t )dt .

calculate0+e3tln(1+et)dt.

Question Number 38105    Answers: 1   Comments: 0

find ∫ (dx/((√(2x+1)) +(√(2x−1))))

finddx2x+1+2x1

Question Number 38104    Answers: 1   Comments: 0

find ∫_1 ^(+∞) (dx/((x^2 +2)(√(x+3))))

find1+dx(x2+2)x+3

Question Number 38103    Answers: 0   Comments: 0

find I(λ)= ∫_0 ^(π/2) ((xdx)/(λ +tanx)) λ from R.

findI(λ)=0π2xdxλ+tanxλfromR.

Question Number 38102    Answers: 0   Comments: 0

let B_n = ∫_0 ^n e^(−(x−[x])^2 ) dx 1) calculate B_n 2) find lim_(n→+∞) B_n

letBn=0ne(x[x])2dx1)calculateBn2)findlimn+Bn

Question Number 38101    Answers: 0   Comments: 1

let A_n = ∫_0 ^n e^(x−[x]) dx 1) calculate A_n 2) find lim_(n→+∞) A_n

letAn=0nex[x]dx1)calculateAn2)findlimn+An

Question Number 38100    Answers: 0   Comments: 1

let A_n = ∫_0 ^n (x−[x])^2 dx 1) calculate A_n 2) find lim_(n→+∞) A_n

letAn=0n(x[x])2dx1)calculateAn2)findlimn+An

Question Number 38074    Answers: 1   Comments: 4

∫(dx/(a+btan^2 x)) = ?

dxa+btan2x=?

Question Number 38058    Answers: 3   Comments: 0

∫((tan x)/(a+btan^2 x)) dx = ?

tanxa+btan2xdx=?

Question Number 38057    Answers: 1   Comments: 0

∫((cos 5x+cos 4x)/(1−2cos 3x))dx = ?

cos5x+cos4x12cos3xdx=?

Question Number 37961    Answers: 1   Comments: 0

calculate ∫_0 ^∞ (dx/(x^(2 ) +(√(1+x^2 )))) .

calculate0dxx2+1+x2.

Question Number 37938    Answers: 5   Comments: 5

Question Number 37922    Answers: 1   Comments: 2

f : N → R g : N → R f(n)=∫_0 ^(2π) x^n sin x dx g(n)=∫_0 ^(2π) x^n cos x dx ((f(n+1)−f(n))/(g(n+1)−g(n)))=?

f:NRg:NRf(n)=02πxnsinxdxg(n)=02πxncosxdxf(n+1)f(n)g(n+1)g(n)=?

Question Number 37912    Answers: 1   Comments: 1

Evaluate : the Integral ∫_(-(π/2)) ^(π/2) ∫_0 ^(3 cos θ) r^2 sin^2 θ. dr dθ

Evaluate:theIntegralπ2π203cosθr2sin2θ.drdθ

Question Number 37902    Answers: 2   Comments: 1

ind the value of f(a) =∫_0 ^(+∞) (dx/(x^2 +(√(a^2 +x^2 )))) dx witha>0 2)calculate f^′ (a) .

indthevalueoff(a)=0+dxx2+a2+x2dxwitha>02)calculatef(a).

Question Number 37898    Answers: 1   Comments: 1

calculate f(λ) = ∫_0 ^(+∞) e^(−λx) cos(π[x])dx withλ>0

calculatef(λ)=0+eλxcos(π[x])dxwithλ>0

Question Number 37896    Answers: 2   Comments: 1

let I_n = ∫_0 ^n (((−1)^([x]) )/((2x+1)^2 ))dx 1) calculate I_n interms of n 2) find lim_(n→+∞) I_n

letIn=0n(1)[x](2x+1)2dx1)calculateInintermsofn2)findlimn+In

Question Number 37895    Answers: 1   Comments: 0

calculate A_n =∫_0 ^n (x−[(√x)])dx and lim_(n→+∞) A_n

calculateAn=0n(x[x])dxandlimn+An

Question Number 37893    Answers: 1   Comments: 1

calculate ∫_0 ^1 (√(x+(√(x+1)))) dx .

calculate01x+x+1dx.

Question Number 37889    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((arctan(2x))/x) e^(−tx) dx with t ≥0

calculate0arctan(2x)xetxdxwitht0

Question Number 37888    Answers: 1   Comments: 2

find f(α) = ∫_0 ^1 arctan(e^(−αx) )dx with α≥0

findf(α)=01arctan(eαx)dxwithα0

Question Number 37887    Answers: 0   Comments: 0

find f(α) = ∫_0 ^1 arctan(1+e^(−αx) )dx with α≥0

findf(α)=01arctan(1+eαx)dxwithα0

  Pg 274      Pg 275      Pg 276      Pg 277      Pg 278      Pg 279      Pg 280      Pg 281      Pg 282      Pg 283   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com