Question and Answers Forum |
IntegrationQuestion and Answers: Page 280 |
calculate ∫_C (z/(z^2 +1))dz with C={z∈C/∣z∣=(1/2)} |
calculate g(θ) = ∫_(−∞) ^(+∞) e^(−x^2 ) sin(sinθ x^2 )dx . |
find f(θ) = ∫_(−∞) ^(+∞) e^(−x^2 ) cos(cosθx)dx . |
calculate ∫_0 ^(2π) (dx/(cos^2 t +4sin^2 t))dt . |
calculate f(α) = ∫_(−∞) ^(+∞) ((cos(2x))/(1+ax^2 )) dx with a>0 2) find the value of ∫_(−∞) ^(+∞) ((cos(2x))/(1+3x^2 )) dx . |
calculate f(t) = ∫_(−∞) ^(+∞) ((cos(tx))/(1+x^2 )) dx |
let A_n = ∫_0 ^∞ e^(−nx^2 ) sin((x/n))dx with n integr not 0 1) calculate A_n 2) find lim_(n→+∞) A_n |
find A_n = ∫_0 ^1 (x^n /(ch(x))) dx . |
find ∫_0 ^∞ ((cosx)/(ch(x))) dx . |
find a better approximation for the integrals 1) ∫_0 ^1 e^(−x^2 ) dx 2) ∫_1 ^(+∞) e^(−x^2 ) dx . |
calculate ∫_0 ^6 (e^(x−[x]) /(1+e^x ))dx . |
cslculate ∫∫_([0,1]^2 ) (x−y)e^(−x−y) dxdy . |
calculate ∫∫_D x cos(x^2 +y^2 )dxdy with D={(x,y)∈R^2 / 0≤x≤1 and 1≤y≤3} |
calculate I_n =∫_0 ^4 (−1)^([x]) (x^n −x)dx |
let A_n = ∫_0 ^(1/n) arctan(1+x^2 )dx 1) calculate A_n 2)find lim_(n→+∞) A_n . |
let f(x)=cos(x−e^(−x) ) developp f at integr serie. |
find A_n =∫_1 ^2 ( 1 +(1/x) +(1/x^2 ) +...+(1/x^n ))^2 dx |
find ∫_0 ^1 (((1−x^(n+1) )/(1−x)))^2 dx . |
∫ ((x^3 +1)/(√(x^2 +x))) dx = ? |
For x>1 , ∫ sin^(−1) (((2x)/(1+x^2 )))dx = ? |
find f (t) =∫_0 ^∞ e^x ln(1+e^(−tx) )dx with t >0 . 2) let u_n = ∫_0 ^∞ e^x ln(1+e^(−nx) ) dx find lim_(n→+∞) u_n . |
calculate ∫_0 ^(π/2) ((cosθ.sinθ)/(cosθ +sinθ)) dθ . |
calculate ∫_0 ^(2π) ∣sin(((kt)/2))∣ dt with k integr and k≥3 |
calculate ∫_0 ^(π/2) (√(4sin^2 t +cos^2 (t))) dt |
calculate ∫_(−∞) ^(+∞) (((1+ix)/(1−ix)))^(m−n) (dx/(1+x^2 )) dx with m and n integrs |
let n≥2 and f : R_n [x]→R_2 [x] / f(p) =xp(1) +(x^2 −4)p(0) 1) prove that f is linear 2) find dim Kerf and dimIm(f) |
Pg 275 Pg 276 Pg 277 Pg 278 Pg 279 Pg 280 Pg 281 Pg 282 Pg 283 Pg 284 |