Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 282

Question Number 36936    Answers: 0   Comments: 2

calculate I_n = ∫_0 ^π (dx/(1+cos^2 (nx)))

calculateIn=0πdx1+cos2(nx)

Question Number 36935    Answers: 0   Comments: 0

find all function f R→R wich verify ∀(x,y)∈ R^2 f(x).f(y) =∫_(x−y) ^(x+y) f(t)dt .

findallfunctionfRRwichverify(x,y)R2f(x).f(y)=xyx+yf(t)dt.

Question Number 36932    Answers: 0   Comments: 0

let f ∈ C^0 ([0,π],R) prove that lim_(n→+∞) ∫_0 ^π f(x) ∣sin(nx)∣dx =(2/π) ∫_0 ^π f(x)dx .

letfC0([0,π],R)provethatlimn+0πf(x)sin(nx)dx=2π0πf(x)dx.

Question Number 36931    Answers: 0   Comments: 2

calculate ∫_0 ^(2π) (dt/(x −e^(it) ))

calculate02πdtxeit

Question Number 36930    Answers: 0   Comments: 0

let u_n = (1/(2n+1)) +(1/(2n+3)) +.....+(1/(4n−1)) calculate lim_(n→+∞) u_n .

letun=12n+1+12n+3+.....+14n1calculatelimn+un.

Question Number 36919    Answers: 0   Comments: 1

calculate f(α)= ∫_(−∞) ^(+∞) (1+αi)^(−x^2 ) dx .

calculatef(α)=+(1+αi)x2dx.

Question Number 36918    Answers: 0   Comments: 0

calculate ∫_0 ^(+∞) (1−i)^(−x^2 ) dx

calculate0+(1i)x2dx

Question Number 36917    Answers: 0   Comments: 1

calculate ∫_0 ^(+∞) (1+i)^(−x^2 ) dx

calculate0+(1+i)x2dx

Question Number 36916    Answers: 0   Comments: 1

let z=r e^(iθ) fins f(z) = ∫_(−∞) ^(+∞) z^(−x^2 ) dx

letz=reiθfinsf(z)=+zx2dx

Question Number 36915    Answers: 0   Comments: 1

let z =a+ib find f(z) = ∫_(−∞) ^(+∞) z^(−x^2 ) dx

letz=a+ibfindf(z)=+zx2dx

Question Number 36912    Answers: 0   Comments: 1

let ⟨p,q⟩= ∫_(−1) ^1 p(x)q(x)dx with p and q are two polynoms fromR[x] 1)let p(x)=x^n calculate ⟨p,p⟩ 2)let p(x)=1+x+x^2 +....+x^n find ⟨p,p⟩.

letp,q=11p(x)q(x)dxwithpandqaretwopolynomsfromR[x]1)letp(x)=xncalculatep,p2)letp(x)=1+x+x2+....+xnfindp,p.

Question Number 36910    Answers: 0   Comments: 0

1) decompose inside R(x) the fraction F(x)= (1/((1−x^2 )(1−x^3 ))) 2) find ∫ F(x)dx .

1)decomposeinsideR(x)thefractionF(x)=1(1x2)(1x3)2)findF(x)dx.

Question Number 36892    Answers: 1   Comments: 1

2. ∫[(√((1−x^2 )/(1+x^2 )))]dx=?

2.[(1x2)/(1+x2)]dx=?

Question Number 36818    Answers: 1   Comments: 1

find f(a) = ∫ (dx/(√(1−ax^2 ))) with a from R .

findf(a)=dx1ax2withafromR.

Question Number 36811    Answers: 1   Comments: 0

∫ ((sin x)/(cos^2 x. (√(cos 2x)))) dx= ?

sinxcos2x.cos2xdx=?

Question Number 36801    Answers: 2   Comments: 0

∫ ((1+x^4 )/((1−x^4 )^(3/2) )) dx = A ∫ A = B Find B ? Assume integration of constant=0.

1+x4(1x4)32dx=AA=BFindB?Assumeintegrationofconstant=0.

Question Number 36799    Answers: 1   Comments: 1

find ∫_0 ^∞ e^t ln(1+e^(−2t) )dt .

find0etln(1+e2t)dt.

Question Number 36762    Answers: 1   Comments: 2

find A_n = ∫_0 ^(π/4) (cosx +sinx)^n dx.

findAn=0π4(cosx+sinx)ndx.

Question Number 36755    Answers: 1   Comments: 4

let f(a) = ∫_0 ^1 e^t ln(1+ e^(−at) )dt with a≥0 1) find f(a) 2) calculate f^′ (a) 3) find the value of ∫_0 ^1 e^t ln(1+e^(−3t) )dt .

letf(a)=01etln(1+eat)dtwitha01)findf(a)2)calculatef(a)3)findthevalueof01etln(1+e3t)dt.

Question Number 36754    Answers: 1   Comments: 1

calculate ∫_1 ^(+∞) (dx/(x^2 (√(4+x^2 )))) .

calculate1+dxx24+x2.

Question Number 36753    Answers: 1   Comments: 2

find I_n = ∫_0 ^1 x^n arctan(x)dx .

findIn=01xnarctan(x)dx.

Question Number 36752    Answers: 1   Comments: 4

find ∫ (dx/(arcsinx(√(1−x^2 )))) .

finddxarcsinx1x2.

Question Number 36747    Answers: 0   Comments: 1

let f(x)= Σ_(n=1) ^∞ ((sin(nx))/n) x^n 1) prove that f is C^1 on ]−1,1[ 2)calculate f^′ (x) and prove that f(x)=arctan( ((xsinx)/(1−x cosx)))

letf(x)=n=1sin(nx)nxn1)provethatfisC1on]1,1[2)calculatef(x)andprovethatf(x)=arctan(xsinx1xcosx)

Question Number 36738    Answers: 2   Comments: 3

(1) ∫(dα/((1+sin 2α)^2 ))= (2) ∫(dβ/((1+cos 2β)^2 ))= (3) ∫(dγ/((1+sin 2γ)(1+cos 2γ)))=

(1)dα(1+sin2α)2=(2)dβ(1+cos2β)2=(3)dγ(1+sin2γ)(1+cos2γ)=

Question Number 36737    Answers: 0   Comments: 1

let g(θ) =∫_0 ^1 ln( 1−e^(iθ) x^2 )dx find a simple form of g(θ) .θ from R.

letg(θ)=01ln(1eiθx2)dxfindasimpleformofg(θ).θfromR.

Question Number 36736    Answers: 0   Comments: 1

let f(θ) = ∫_0 ^1 ln(1−e^(iθ) x)dx find a simple form of f(θ)

letf(θ)=01ln(1eiθx)dxfindasimpleformoff(θ)

  Pg 277      Pg 278      Pg 279      Pg 280      Pg 281      Pg 282      Pg 283      Pg 284      Pg 285      Pg 286   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com