Question and Answers Forum |
IntegrationQuestion and Answers: Page 282 |
calculate I_n = ∫_0 ^π (dx/(1+cos^2 (nx))) |
find all function f R→R wich verify ∀(x,y)∈ R^2 f(x).f(y) =∫_(x−y) ^(x+y) f(t)dt . |
let f ∈ C^0 ([0,π],R) prove that lim_(n→+∞) ∫_0 ^π f(x) ∣sin(nx)∣dx =(2/π) ∫_0 ^π f(x)dx . |
calculate ∫_0 ^(2π) (dt/(x −e^(it) )) |
let u_n = (1/(2n+1)) +(1/(2n+3)) +.....+(1/(4n−1)) calculate lim_(n→+∞) u_n . |
calculate f(α)= ∫_(−∞) ^(+∞) (1+αi)^(−x^2 ) dx . |
calculate ∫_0 ^(+∞) (1−i)^(−x^2 ) dx |
calculate ∫_0 ^(+∞) (1+i)^(−x^2 ) dx |
let z=r e^(iθ) fins f(z) = ∫_(−∞) ^(+∞) z^(−x^2 ) dx |
let z =a+ib find f(z) = ∫_(−∞) ^(+∞) z^(−x^2 ) dx |
let ⟨p,q⟩= ∫_(−1) ^1 p(x)q(x)dx with p and q are two polynoms fromR[x] 1)let p(x)=x^n calculate ⟨p,p⟩ 2)let p(x)=1+x+x^2 +....+x^n find ⟨p,p⟩. |
1) decompose inside R(x) the fraction F(x)= (1/((1−x^2 )(1−x^3 ))) 2) find ∫ F(x)dx . |
2. ∫[(√((1−x^2 )/(1+x^2 )))]dx=? |
find f(a) = ∫ (dx/(√(1−ax^2 ))) with a from R . |
∫ ((sin x)/(cos^2 x. (√(cos 2x)))) dx= ? |
∫ ((1+x^4 )/((1−x^4 )^(3/2) )) dx = A ∫ A = B Find B ? Assume integration of constant=0. |
find ∫_0 ^∞ e^t ln(1+e^(−2t) )dt . |
find A_n = ∫_0 ^(π/4) (cosx +sinx)^n dx. |
let f(a) = ∫_0 ^1 e^t ln(1+ e^(−at) )dt with a≥0 1) find f(a) 2) calculate f^′ (a) 3) find the value of ∫_0 ^1 e^t ln(1+e^(−3t) )dt . |
calculate ∫_1 ^(+∞) (dx/(x^2 (√(4+x^2 )))) . |
find I_n = ∫_0 ^1 x^n arctan(x)dx . |
find ∫ (dx/(arcsinx(√(1−x^2 )))) . |
let f(x)= Σ_(n=1) ^∞ ((sin(nx))/n) x^n 1) prove that f is C^1 on ]−1,1[ 2)calculate f^′ (x) and prove that f(x)=arctan( ((xsinx)/(1−x cosx))) |
(1) ∫(dα/((1+sin 2α)^2 ))= (2) ∫(dβ/((1+cos 2β)^2 ))= (3) ∫(dγ/((1+sin 2γ)(1+cos 2γ)))= |
let g(θ) =∫_0 ^1 ln( 1−e^(iθ) x^2 )dx find a simple form of g(θ) .θ from R. |
let f(θ) = ∫_0 ^1 ln(1−e^(iθ) x)dx find a simple form of f(θ) |
Pg 277 Pg 278 Pg 279 Pg 280 Pg 281 Pg 282 Pg 283 Pg 284 Pg 285 Pg 286 |