Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 284

Question Number 36441    Answers: 1   Comments: 1

find ∫ (e^(tanx) /(cos^2 x))dx

findetanxcos2xdx

Question Number 36440    Answers: 0   Comments: 0

find ∫ (dx/((3+x^2 )^(1/3) ))

finddx(3+x2)13

Question Number 36439    Answers: 1   Comments: 1

calculate ∫_0 ^π ((sin(2x))/(2 +cosx))dx

calculate0πsin(2x)2+cosxdx

Question Number 36438    Answers: 1   Comments: 3

let F(x) =∫_x ^(1/x) ((arctan(t))/t)dt 1) calculate (dF/dx)(x) 2) find F(x).

letF(x)=x1xarctan(t)tdt1)calculatedFdx(x)2)findF(x).

Question Number 36436    Answers: 2   Comments: 0

find ∫ ((sinx)/(1+cos^3 x))dx

findsinx1+cos3xdx

Question Number 36435    Answers: 0   Comments: 4

find the value of h(t)=∫_0 ^1 ln(1+tx^2 ) with ∣t∣≤1 2) calculate ∫_0 ^1 ln(1+x^2 )dx 3) calculate ∫_0 ^1 ln(1−x^2 )dx

findthevalueofh(t)=01ln(1+tx2)witht∣⩽12)calculate01ln(1+x2)dx3)calculate01ln(1x2)dx

Question Number 36434    Answers: 1   Comments: 1

find g(x) =∫_0 ^x (e^(−t) /(√(1+t^2 )))dt.

findg(x)=0xet1+t2dt.

Question Number 36433    Answers: 2   Comments: 1

valculate f(x)= ∫_0 ^2 (((x+2)^2 )/(√(x^2 +4x+5)))dx

valculatef(x)=02(x+2)2x2+4x+5dx

Question Number 36432    Answers: 1   Comments: 1

calculate I = ∫_(−∞) ^(+∞) ((x+1)/((x^2 +1)^2 ))dx .

calculateI=+x+1(x2+1)2dx.

Question Number 36431    Answers: 0   Comments: 1

calculate ∫_0 ^1 ((x+1)/((x^2 +1)^2 ))dx

calculate01x+1(x2+1)2dx

Question Number 36430    Answers: 1   Comments: 1

find ∫ ((ln(x+x^2 ))/x^2 )dx

findln(x+x2)x2dx

Question Number 36429    Answers: 1   Comments: 1

let ϕ(λ) = ∫_(λ/π) ^(π/λ) (1+(1/x^2 ))arctan(x)dx with λ>0 1) find a simple form of ϕ(λ) 2) calculate ϕ^′ (λ).

letφ(λ)=λππλ(1+1x2)arctan(x)dxwithλ>01)findasimpleformofφ(λ)2)calculateφ(λ).

Question Number 36428    Answers: 2   Comments: 1

find ∫ (dx/(cos^4 x +sin^4 x))

finddxcos4x+sin4x

Question Number 36427    Answers: 1   Comments: 1

calculate ∫_(π/8) ^(π/6) (dx/(sin(2x)))

calculateπ8π6dxsin(2x)

Question Number 36426    Answers: 1   Comments: 0

find ∫ x^2 (√(1+x^3 )) dx

findx21+x3dx

Question Number 36425    Answers: 2   Comments: 2

calculate ∫_1 ^4 ((x(√x))/(x^2 −5x +4))dx

calculate14xxx25x+4dx

Question Number 36424    Answers: 0   Comments: 2

find ∫ x^2 (√(x^2 −1))dx

findx2x21dx

Question Number 36423    Answers: 0   Comments: 0

find ∫ (dt/(t(√(t^2 +t+1))))

finddttt2+t+1

Question Number 36422    Answers: 0   Comments: 1

find f(x)= ∫_0 ^x (t^2 +1)arctan(t)dt .

findf(x)=0x(t2+1)arctan(t)dt.

Question Number 36421    Answers: 0   Comments: 1

find ∫ (dx/(1+2(√(1−x))))

finddx1+21x

Question Number 36420    Answers: 0   Comments: 0

let f(x)=∫_0 ^∞ (( arctan(xt^2 ))/(1+t^4 ))dt 1) calculate f^′ (x) 2) find a simple form of f(x).

letf(x)=0arctan(xt2)1+t4dt1)calculatef(x)2)findasimpleformoff(x).

Question Number 36419    Answers: 0   Comments: 3

calculate ∫_0 ^∞ ((x^2 −1)/((2x^2 +3)^3 ))dx

calculate0x21(2x2+3)3dx

Question Number 36418    Answers: 1   Comments: 0

calculate ∫_(−3) ^4 ∣x^2 −2x−3∣dx

calculate34x22x3dx

Question Number 36417    Answers: 1   Comments: 1

calculate ∫_2 ^6 (dx/((√(x+1)) +(√(x−1))))

calculate26dxx+1+x1

Question Number 36416    Answers: 0   Comments: 0

calculate I = ∫_1 ^2 ((2x^3 +5x^2 −4x−7)/((x+2)^2 ))dx

calculateI=122x3+5x24x7(x+2)2dx

Question Number 36415    Answers: 0   Comments: 1

calculate I = ∫_0 ^(π/2) (x^3 +x)cos^2 xdx and J = ∫_0 ^(π/2) (x^3 +x)sin^2 xdx cslculate I and J .

calculateI=0π2(x3+x)cos2xdxandJ=0π2(x3+x)sin2xdxcslculateIandJ.

  Pg 279      Pg 280      Pg 281      Pg 282      Pg 283      Pg 284      Pg 285      Pg 286      Pg 287      Pg 288   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com