Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 285

Question Number 36393    Answers: 0   Comments: 0

let f(x) = (2/(sinx)) ,2π periodic odd developp f at fourier serie .

letf(x)=2sinx,2πperiodicodddeveloppfatfourierserie.

Question Number 36336    Answers: 0   Comments: 4

find f(x)= ∫_0 ^∞ arctan(xt^2 )dt with x>0

findf(x)=0arctan(xt2)dtwithx>0

Question Number 36335    Answers: 0   Comments: 1

find f(t) = ∫_0 ^1 arctan(tx^2 )dx with t≥0 developp f at integr serie

findf(t)=01arctan(tx2)dxwitht0developpfatintegrserie

Question Number 36205    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((x^2 −1)/((x^2 +1)^2 )) x^(1/3) dx

calculate0x21(x2+1)2x13dx

Question Number 36204    Answers: 0   Comments: 1

find the value of ∫_0 ^∞ ((x^2 −1)/(x^2 +1)) ((sin(x))/x)dx

findthevalueof0x21x2+1sin(x)xdx

Question Number 36203    Answers: 0   Comments: 1

let f(t) = ∫_0 ^∞ ((cos(tx))/((2+x^2 )^2 ))dx 1) find a simple form of f(t) 2) calculate ∫_0 ^∞ ((cos(3x))/((2+x^2 )^2 ))dx

letf(t)=0cos(tx)(2+x2)2dx1)findasimpleformoff(t)2)calculate0cos(3x)(2+x2)2dx

Question Number 36202    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((x^2 dx)/((x^2 +1)^3 ))

calculate0x2dx(x2+1)3

Question Number 36201    Answers: 0   Comments: 1

calculate ∫_0 ^(π/2) (dθ/(1+2sin^2 θ))

calculate0π2dθ1+2sin2θ

Question Number 36200    Answers: 0   Comments: 4

calculate ∫_0 ^(2π) (dθ/((2+cosθ)^2 ))

calculate02πdθ(2+cosθ)2

Question Number 36198    Answers: 0   Comments: 1

let f(z) = ((z^2 +1)/(z^4 −1)) find (a_(k)) the poles of f and calculate Res(f,a_k )

letf(z)=z2+1z41find(ak)thepolesoffandcalculateRes(f,ak)

Question Number 36197    Answers: 0   Comments: 1

find the value of ∫_0 ^(2π) (dx/(cos^2 x +3 sin^2 x))

findthevalueof02πdxcos2x+3sin2x

Question Number 36196    Answers: 0   Comments: 0

let ρ>0 and C the circle x^2 +y^2 =ρ^2 calculate ∫_C ydx +xy dy

letρ>0andCthecirclex2+y2=ρ2calculateCydx+xydy

Question Number 36195    Answers: 0   Comments: 1

let C ={(x,y)∈R^2 / 0≤x≤1 and y=2x^2 } calculate ∫_C x^2 ydx +(x^2 −y^2 )dy

letC={(x,y)R2/0x1andy=2x2}calculateCx2ydx+(x2y2)dy

Question Number 36194    Answers: 0   Comments: 0

let D ={(x,y,z)∈R^2 / 0<z<1 and x^2 +y^2 <z^2 } calculate ∫∫_D xyzdxdydz

letD={(x,y,z)R2/0<z<1andx2+y2<z2}calculateDxyzdxdydz

Question Number 36193    Answers: 0   Comments: 1

let D ={(x,y)∈ R^2 / x^2 +y^2 −x<0 and x^2 +y^2 −y >0 and y>0} calculate∫∫_D (x+y)^2 dxdy

letD={(x,y)R2/x2+y2x<0andx2+y2y>0andy>0}calculateD(x+y)2dxdy

Question Number 36192    Answers: 0   Comments: 1

let D ={(x,y)∈ R^2 /x^2 +y^2 <1} find the value of ∫∫_D ((dxdy)/(x^2 +y^(2 ) + 2))

letD={(x,y)R2/x2+y2<1}findthevalueofDdxdyx2+y2+2

Question Number 36190    Answers: 0   Comments: 1

calculate ∫∫_D (x+y)e^(x+y) dxdy with D = {(x,y)∈R^2 / 0<x<2 and 1<y<2 }

calculateD(x+y)ex+ydxdywithD={(x,y)R2/0<x<2and1<y<2}

Question Number 36189    Answers: 0   Comments: 1

let F(x)=∫_0 ^∞ ((e^(−x^2 t) (√t))/(1+t^2 ))dt calculate lim_(x→+∞) F(x) .

letF(x)=0ex2tt1+t2dtcalculatelimx+F(x).

Question Number 36188    Answers: 0   Comments: 1

find the value of ∫_0 ^∞ ((√t)/(1+t^2 ))dt

findthevalueof0t1+t2dt

Question Number 36187    Answers: 0   Comments: 3

let I_n (x)= ∫_0 ^∞ ((t sin(t))/((t^2 +x^2 )^n ))dt 1) find a relation between I_(n+1) and I_n 2) calculate I_2 (x) and I_3 (x) 3) calculate ∫_0 ^∞ ((tsin(t))/((2+t^2 )^2 ))dt

letIn(x)=0tsin(t)(t2+x2)ndt1)findarelationbetweenIn+1andIn2)calculateI2(x)andI3(x)3)calculate0tsin(t)(2+t2)2dt

Question Number 36186    Answers: 0   Comments: 1

find nature of ∫_1 ^(+∞) (√t) sin(t^2 )dt .

findnatureof1+tsin(t2)dt.

Question Number 36185    Answers: 0   Comments: 2

study the vonvergence of ∫_1 ^(+∞) ((e^(−(1/t)) −cos((1/t)))/t)dt

studythevonvergenceof1+e1tcos(1t)tdt

Question Number 36184    Answers: 0   Comments: 1

study the convergence of ∫_1 ^(+∞) ((cos(t))/(√t))dt

studytheconvergenceof1+cos(t)tdt

Question Number 36183    Answers: 0   Comments: 0

calculate ∫_1 ^(+∞) arctan((1/t))dt

calculate1+arctan(1t)dt

Question Number 36182    Answers: 2   Comments: 1

calculate ∫_1 ^(+∞) (dt/(t(√(1+t^2 ))))

calculate1+dtt1+t2

Question Number 36181    Answers: 0   Comments: 1

let I(ξ) = ∫_ξ ^(1−ξ) (dt/(1−(t−ξ)^2 )) find lim_(ξ→0^+ ) I(ξ)

letI(ξ)=ξ1ξdt1(tξ)2findlimξ0+I(ξ)

  Pg 280      Pg 281      Pg 282      Pg 283      Pg 284      Pg 285      Pg 286      Pg 287      Pg 288      Pg 289   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com