Question and Answers Forum |
IntegrationQuestion and Answers: Page 285 |
let f(x) = (2/(sinx)) ,2π periodic odd developp f at fourier serie . |
find f(x)= ∫_0 ^∞ arctan(xt^2 )dt with x>0 |
find f(t) = ∫_0 ^1 arctan(tx^2 )dx with t≥0 developp f at integr serie |
calculate ∫_0 ^∞ ((x^2 −1)/((x^2 +1)^2 )) x^(1/3) dx |
find the value of ∫_0 ^∞ ((x^2 −1)/(x^2 +1)) ((sin(x))/x)dx |
let f(t) = ∫_0 ^∞ ((cos(tx))/((2+x^2 )^2 ))dx 1) find a simple form of f(t) 2) calculate ∫_0 ^∞ ((cos(3x))/((2+x^2 )^2 ))dx |
calculate ∫_0 ^∞ ((x^2 dx)/((x^2 +1)^3 )) |
calculate ∫_0 ^(π/2) (dθ/(1+2sin^2 θ)) |
calculate ∫_0 ^(2π) (dθ/((2+cosθ)^2 )) |
let f(z) = ((z^2 +1)/(z^4 −1)) find (a_(k)) the poles of f and calculate Res(f,a_k ) |
find the value of ∫_0 ^(2π) (dx/(cos^2 x +3 sin^2 x)) |
let ρ>0 and C the circle x^2 +y^2 =ρ^2 calculate ∫_C ydx +xy dy |
let C ={(x,y)∈R^2 / 0≤x≤1 and y=2x^2 } calculate ∫_C x^2 ydx +(x^2 −y^2 )dy |
let D ={(x,y,z)∈R^2 / 0<z<1 and x^2 +y^2 <z^2 } calculate ∫∫_D xyzdxdydz |
let D ={(x,y)∈ R^2 / x^2 +y^2 −x<0 and x^2 +y^2 −y >0 and y>0} calculate∫∫_D (x+y)^2 dxdy |
let D ={(x,y)∈ R^2 /x^2 +y^2 <1} find the value of ∫∫_D ((dxdy)/(x^2 +y^(2 ) + 2)) |
calculate ∫∫_D (x+y)e^(x+y) dxdy with D = {(x,y)∈R^2 / 0<x<2 and 1<y<2 } |
let F(x)=∫_0 ^∞ ((e^(−x^2 t) (√t))/(1+t^2 ))dt calculate lim_(x→+∞) F(x) . |
find the value of ∫_0 ^∞ ((√t)/(1+t^2 ))dt |
let I_n (x)= ∫_0 ^∞ ((t sin(t))/((t^2 +x^2 )^n ))dt 1) find a relation between I_(n+1) and I_n 2) calculate I_2 (x) and I_3 (x) 3) calculate ∫_0 ^∞ ((tsin(t))/((2+t^2 )^2 ))dt |
find nature of ∫_1 ^(+∞) (√t) sin(t^2 )dt . |
study the vonvergence of ∫_1 ^(+∞) ((e^(−(1/t)) −cos((1/t)))/t)dt |
study the convergence of ∫_1 ^(+∞) ((cos(t))/(√t))dt |
calculate ∫_1 ^(+∞) arctan((1/t))dt |
calculate ∫_1 ^(+∞) (dt/(t(√(1+t^2 )))) |
let I(ξ) = ∫_ξ ^(1−ξ) (dt/(1−(t−ξ)^2 )) find lim_(ξ→0^+ ) I(ξ) |
Pg 280 Pg 281 Pg 282 Pg 283 Pg 284 Pg 285 Pg 286 Pg 287 Pg 288 Pg 289 |