Question and Answers Forum |
IntegrationQuestion and Answers: Page 287 |
find F(x)=∫_0 ^x e^(−2t) cos(t+(π/4))dx. |
find f(x)=∫_0 ^x ch^4 t dt |
calculate ∫_1 ^3 (x/(e^x −1))dx .. |
![]() |
let f(x)= ((sin(2x))/x) χ_(]−a,a[) (x) with a>0 calculate the fourier trsnsform of f . |
let ϕ(x)= (1/(√(a^2 −x^2 ))) if ∣x∣<a and ϕ(x)=0 if ∣x∣≥a find the fourier transform of ϕ . |
let U_n = ∫_0 ^∞ e^(−(t/n)) arctan(t)dt find a equivalent of U_n (n→+∞) |
1) find the value of f(x)=∫_0 ^∞ ((1−cos(xt))/t^2 ) e^(−t) dt 2) calculate ∫_0 ^∞ ((1−cos(t))/t^2 ) e^(−t) dt . |
let f(x,y) = ∫_x ^y ((ln(t)ln(1−t))/t)dt with 0<x<y<1 give f(x,y) at form of serie . |
find the value of I =∫_0 ^1 ((ln(t)ln(1−t))/t)dt |
study the convergence of I =∫_0 ^∞ (dx/((1+x^2 ∣sinx∣)^(3/2) )) |
find lim_(ξ→0) ∫_0 ^(π/2) (dx/(√( sin^2 x +ξ cos^2 x))) |
let f(x) =e^(−x) sinx odd 2π periodic developp f at fourier serie . |
let f(x) = x∣x∣ odd 2π periodic developp f at fourier serie . |
integrate the e.d. y′ +e^(−2x) y = (2x+1)cosx |
integrate the e.d . y^(′′) +(x−1)y = e^(−x) sinx with y(0) =1 |
integrate the d.e y^(′′) −2y^′ +y = x^2 ch(x) |
let S_n = Σ_(k=0) ^n (1/(3k+1)) calculate S_n interms of H_n with H_n =Σ_(k=1) ^n (1/k) |
find I_(a,b) = ∫_(−∞) ^(+∞) (e^x /((1+a e^x )(1+be^x )))dx .. |
calculate I =∫_0 ^∞ (((1+t)^(−(1/4)) −(1+t)^(−(3/4)) )/t)dt |
let h(t) = e^(t−e^t ) and for n≥0 we put h_n (t) =nh(nt) calculate ∫_(−∞) ^(+∞) h_n (t)dt . |
let give x∈]0,2π[ and a ∈R,b∈ R prove that ((π−x)/2) = arctan(((sinx)/(1−cosx))) 2) prove that ∣arctan(a)−arctan(b)∣≤∣a−b∣ 3)letθ ∈]0,(π/2)[ , x ∈[θ,2π−θ] , r∈[0,1[ prove that ∣ϕ(x,r) −((π−x)/2)∣≤ ((1−r)/((1−cosθ)^2 )) |
let r ∈[0,1[ and x∈ R and ϕ(x,r) = arctan( ((rsinx)/(1−r cosx))) 1) prove that (∂ϕ/∂x)(x,r) =Σ_(n=1) ^∞ r^n cos(nx) 2)prove that ϕ(x,r) = Σ_(n=1) ^∞ r^n ((sin(nx))/n) |
let r∈[0,1[ and x from R F(x,r) = (1/(2π)) ∫_0 ^(2π) (((1−r^2 )f(t))/(1−2r cos(t−x) +r^2 ))dt with f ∈ C^0 (R) 2π periodic and ∣∣f∣∣=sup_(t∈R) ∣f(t)∣ prove that F(x,r)= (a_0 /2) + Σ_(n=1) ^∞ r^n (a_n cos(nx) +b_n sin(nx)) with a_n = (1/π) ∫_0 ^(2π) f(t) cos(nt)dt and b_n = (1/π) ∫_0 ^(2π) f(t)sin(nt)dt |
let r∈[0,1[ and θ ∈ R,x∈ R prove that 1) 1+ 2 Σ_(n=1) ^(+∞) r^n cosθ = ((1−r^2 )/(1−2r cosθ +r^2 )) 2)1 =(1/(2π)) ∫_0 ^(2π) (((1−r^2 ))/(1−2rcos(t−x) +r^2 ))dt |
let x ∈ R and {x}=x −[x] prove that ∫_1 ^(+∞) (({x})/x^2 ) dx is convergent and find its value . |
Pg 282 Pg 283 Pg 284 Pg 285 Pg 286 Pg 287 Pg 288 Pg 289 Pg 290 Pg 291 |