Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 288

Question Number 36198    Answers: 0   Comments: 1

let f(z) = ((z^2 +1)/(z^4 −1)) find (a_(k)) the poles of f and calculate Res(f,a_k )

letf(z)=z2+1z41find(ak)thepolesoffandcalculateRes(f,ak)

Question Number 36197    Answers: 0   Comments: 1

find the value of ∫_0 ^(2π) (dx/(cos^2 x +3 sin^2 x))

findthevalueof02πdxcos2x+3sin2x

Question Number 36196    Answers: 0   Comments: 0

let ρ>0 and C the circle x^2 +y^2 =ρ^2 calculate ∫_C ydx +xy dy

letρ>0andCthecirclex2+y2=ρ2calculateCydx+xydy

Question Number 36195    Answers: 0   Comments: 1

let C ={(x,y)∈R^2 / 0≤x≤1 and y=2x^2 } calculate ∫_C x^2 ydx +(x^2 −y^2 )dy

letC={(x,y)R2/0x1andy=2x2}calculateCx2ydx+(x2y2)dy

Question Number 36194    Answers: 0   Comments: 0

let D ={(x,y,z)∈R^2 / 0<z<1 and x^2 +y^2 <z^2 } calculate ∫∫_D xyzdxdydz

letD={(x,y,z)R2/0<z<1andx2+y2<z2}calculateDxyzdxdydz

Question Number 36193    Answers: 0   Comments: 1

let D ={(x,y)∈ R^2 / x^2 +y^2 −x<0 and x^2 +y^2 −y >0 and y>0} calculate∫∫_D (x+y)^2 dxdy

letD={(x,y)R2/x2+y2x<0andx2+y2y>0andy>0}calculateD(x+y)2dxdy

Question Number 36192    Answers: 0   Comments: 1

let D ={(x,y)∈ R^2 /x^2 +y^2 <1} find the value of ∫∫_D ((dxdy)/(x^2 +y^(2 ) + 2))

letD={(x,y)R2/x2+y2<1}findthevalueofDdxdyx2+y2+2

Question Number 36190    Answers: 0   Comments: 1

calculate ∫∫_D (x+y)e^(x+y) dxdy with D = {(x,y)∈R^2 / 0<x<2 and 1<y<2 }

calculateD(x+y)ex+ydxdywithD={(x,y)R2/0<x<2and1<y<2}

Question Number 36189    Answers: 0   Comments: 1

let F(x)=∫_0 ^∞ ((e^(−x^2 t) (√t))/(1+t^2 ))dt calculate lim_(x→+∞) F(x) .

letF(x)=0ex2tt1+t2dtcalculatelimx+F(x).

Question Number 36188    Answers: 0   Comments: 1

find the value of ∫_0 ^∞ ((√t)/(1+t^2 ))dt

findthevalueof0t1+t2dt

Question Number 36187    Answers: 0   Comments: 3

let I_n (x)= ∫_0 ^∞ ((t sin(t))/((t^2 +x^2 )^n ))dt 1) find a relation between I_(n+1) and I_n 2) calculate I_2 (x) and I_3 (x) 3) calculate ∫_0 ^∞ ((tsin(t))/((2+t^2 )^2 ))dt

letIn(x)=0tsin(t)(t2+x2)ndt1)findarelationbetweenIn+1andIn2)calculateI2(x)andI3(x)3)calculate0tsin(t)(2+t2)2dt

Question Number 36186    Answers: 0   Comments: 1

find nature of ∫_1 ^(+∞) (√t) sin(t^2 )dt .

findnatureof1+tsin(t2)dt.

Question Number 36185    Answers: 0   Comments: 2

study the vonvergence of ∫_1 ^(+∞) ((e^(−(1/t)) −cos((1/t)))/t)dt

studythevonvergenceof1+e1tcos(1t)tdt

Question Number 36184    Answers: 0   Comments: 1

study the convergence of ∫_1 ^(+∞) ((cos(t))/(√t))dt

studytheconvergenceof1+cos(t)tdt

Question Number 36183    Answers: 0   Comments: 0

calculate ∫_1 ^(+∞) arctan((1/t))dt

calculate1+arctan(1t)dt

Question Number 36182    Answers: 2   Comments: 1

calculate ∫_1 ^(+∞) (dt/(t(√(1+t^2 ))))

calculate1+dtt1+t2

Question Number 36181    Answers: 0   Comments: 1

let I(ξ) = ∫_ξ ^(1−ξ) (dt/(1−(t−ξ)^2 )) find lim_(ξ→0^+ ) I(ξ)

letI(ξ)=ξ1ξdt1(tξ)2findlimξ0+I(ξ)

Question Number 36180    Answers: 1   Comments: 1

calculate ∫_0 ^1 ((ln(t))/((1+t)^2 ))dt

calculate01ln(t)(1+t)2dt

Question Number 36167    Answers: 0   Comments: 2

let give I = ∫_0 ^∞ (dx/((x^2 +i)^2 )) 1) extract Re(I) and Im(I) 2) find the value of I 3) calculate Re(I) and Im(I) .

letgiveI=0dx(x2+i)21)extractRe(I)andIm(I)2)findthevalueofI3)calculateRe(I)andIm(I).

Question Number 36057    Answers: 2   Comments: 1

find the value of ∫_0 ^(π/4) ((cosx)/(sinx +tanx))dx

findthevalueof0π4cosxsinx+tanxdx

Question Number 36056    Answers: 1   Comments: 2

calculate ∫_(−∞) ^(+∞) ((2x)/((x^2 +mx +1)^2 ))dx with ∣m∣<2

calculate+2x(x2+mx+1)2dxwithm∣<2

Question Number 36031    Answers: 0   Comments: 0

Q. Evaluate: ∫_(∫xyzdxdydz) ^(∫zyxdzdydx) ∫_((d/dx)(x^(sin x) )) ^((d/dx)(x^(cos x) )) ∫_(lim_(x→0) ((−x^2 +2)/x)) ^(lim_(x→0) ((x^2 −2)/x)) ∫_0 ^∞ w^(1−x) x^(1−y) y^(1−z) z^(1−w) dwdxdydz

Q.Evaluate:xyzdxdydzzyxdzdydxddx(xsinx)ddx(xcosx)limx0x2+2xlimx0x22x0w1xx1yy1zz1wdwdxdydz

Question Number 36009    Answers: 0   Comments: 1

calculate ∫_(−∞) ^(+∞) ((xdx)/((2x+1+i)^3 )) with i^2 =−1 .

calculate+xdx(2x+1+i)3withi2=1.

Question Number 35990    Answers: 0   Comments: 2

calculate ∫_2 ^5 ((xdx)/(2x+1 +(√(x−1))))

calculate25xdx2x+1+x1

Question Number 35983    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((2(√t) +1)/(t^5 +3))dt .

calculate02t+1t5+3dt.

Question Number 35982    Answers: 0   Comments: 0

let f(t) =∫_0 ^∞ e^(−arctsn( 1+tx^2 )) dx with t from R 1) calculate f^′ (t) 2) find a simple form of f(t) .

letf(t)=0earctsn(1+tx2)dxwithtfromR1)calculatef(t)2)findasimpleformoff(t).

  Pg 283      Pg 284      Pg 285      Pg 286      Pg 287      Pg 288      Pg 289      Pg 290      Pg 291      Pg 292   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com