Question and Answers Forum |
IntegrationQuestion and Answers: Page 288 |
let f(z) = ((z^2 +1)/(z^4 −1)) find (a_(k)) the poles of f and calculate Res(f,a_k ) |
find the value of ∫_0 ^(2π) (dx/(cos^2 x +3 sin^2 x)) |
let ρ>0 and C the circle x^2 +y^2 =ρ^2 calculate ∫_C ydx +xy dy |
let C ={(x,y)∈R^2 / 0≤x≤1 and y=2x^2 } calculate ∫_C x^2 ydx +(x^2 −y^2 )dy |
let D ={(x,y,z)∈R^2 / 0<z<1 and x^2 +y^2 <z^2 } calculate ∫∫_D xyzdxdydz |
let D ={(x,y)∈ R^2 / x^2 +y^2 −x<0 and x^2 +y^2 −y >0 and y>0} calculate∫∫_D (x+y)^2 dxdy |
let D ={(x,y)∈ R^2 /x^2 +y^2 <1} find the value of ∫∫_D ((dxdy)/(x^2 +y^(2 ) + 2)) |
calculate ∫∫_D (x+y)e^(x+y) dxdy with D = {(x,y)∈R^2 / 0<x<2 and 1<y<2 } |
let F(x)=∫_0 ^∞ ((e^(−x^2 t) (√t))/(1+t^2 ))dt calculate lim_(x→+∞) F(x) . |
find the value of ∫_0 ^∞ ((√t)/(1+t^2 ))dt |
let I_n (x)= ∫_0 ^∞ ((t sin(t))/((t^2 +x^2 )^n ))dt 1) find a relation between I_(n+1) and I_n 2) calculate I_2 (x) and I_3 (x) 3) calculate ∫_0 ^∞ ((tsin(t))/((2+t^2 )^2 ))dt |
find nature of ∫_1 ^(+∞) (√t) sin(t^2 )dt . |
study the vonvergence of ∫_1 ^(+∞) ((e^(−(1/t)) −cos((1/t)))/t)dt |
study the convergence of ∫_1 ^(+∞) ((cos(t))/(√t))dt |
calculate ∫_1 ^(+∞) arctan((1/t))dt |
calculate ∫_1 ^(+∞) (dt/(t(√(1+t^2 )))) |
let I(ξ) = ∫_ξ ^(1−ξ) (dt/(1−(t−ξ)^2 )) find lim_(ξ→0^+ ) I(ξ) |
calculate ∫_0 ^1 ((ln(t))/((1+t)^2 ))dt |
let give I = ∫_0 ^∞ (dx/((x^2 +i)^2 )) 1) extract Re(I) and Im(I) 2) find the value of I 3) calculate Re(I) and Im(I) . |
find the value of ∫_0 ^(π/4) ((cosx)/(sinx +tanx))dx |
calculate ∫_(−∞) ^(+∞) ((2x)/((x^2 +mx +1)^2 ))dx with ∣m∣<2 |
Q. Evaluate: ∫_(∫xyzdxdydz) ^(∫zyxdzdydx) ∫_((d/dx)(x^(sin x) )) ^((d/dx)(x^(cos x) )) ∫_(lim_(x→0) ((−x^2 +2)/x)) ^(lim_(x→0) ((x^2 −2)/x)) ∫_0 ^∞ w^(1−x) x^(1−y) y^(1−z) z^(1−w) dwdxdydz |
calculate ∫_(−∞) ^(+∞) ((xdx)/((2x+1+i)^3 )) with i^2 =−1 . |
calculate ∫_2 ^5 ((xdx)/(2x+1 +(√(x−1)))) |
calculate ∫_0 ^∞ ((2(√t) +1)/(t^5 +3))dt . |
let f(t) =∫_0 ^∞ e^(−arctsn( 1+tx^2 )) dx with t from R 1) calculate f^′ (t) 2) find a simple form of f(t) . |
Pg 283 Pg 284 Pg 285 Pg 286 Pg 287 Pg 288 Pg 289 Pg 290 Pg 291 Pg 292 |