Question and Answers Forum |
IntegrationQuestion and Answers: Page 289 |
let D ={(x,y)∈ R^2 /x^2 +y^2 <1} find the value of ∫∫_D ((dxdy)/(x^2 +y^(2 ) + 2)) |
calculate ∫∫_D (x+y)e^(x+y) dxdy with D = {(x,y)∈R^2 / 0<x<2 and 1<y<2 } |
let F(x)=∫_0 ^∞ ((e^(−x^2 t) (√t))/(1+t^2 ))dt calculate lim_(x→+∞) F(x) . |
find the value of ∫_0 ^∞ ((√t)/(1+t^2 ))dt |
let I_n (x)= ∫_0 ^∞ ((t sin(t))/((t^2 +x^2 )^n ))dt 1) find a relation between I_(n+1) and I_n 2) calculate I_2 (x) and I_3 (x) 3) calculate ∫_0 ^∞ ((tsin(t))/((2+t^2 )^2 ))dt |
find nature of ∫_1 ^(+∞) (√t) sin(t^2 )dt . |
study the vonvergence of ∫_1 ^(+∞) ((e^(−(1/t)) −cos((1/t)))/t)dt |
study the convergence of ∫_1 ^(+∞) ((cos(t))/(√t))dt |
calculate ∫_1 ^(+∞) arctan((1/t))dt |
calculate ∫_1 ^(+∞) (dt/(t(√(1+t^2 )))) |
let I(ξ) = ∫_ξ ^(1−ξ) (dt/(1−(t−ξ)^2 )) find lim_(ξ→0^+ ) I(ξ) |
calculate ∫_0 ^1 ((ln(t))/((1+t)^2 ))dt |
let give I = ∫_0 ^∞ (dx/((x^2 +i)^2 )) 1) extract Re(I) and Im(I) 2) find the value of I 3) calculate Re(I) and Im(I) . |
find the value of ∫_0 ^(π/4) ((cosx)/(sinx +tanx))dx |
calculate ∫_(−∞) ^(+∞) ((2x)/((x^2 +mx +1)^2 ))dx with ∣m∣<2 |
Q. Evaluate: ∫_(∫xyzdxdydz) ^(∫zyxdzdydx) ∫_((d/dx)(x^(sin x) )) ^((d/dx)(x^(cos x) )) ∫_(lim_(x→0) ((−x^2 +2)/x)) ^(lim_(x→0) ((x^2 −2)/x)) ∫_0 ^∞ w^(1−x) x^(1−y) y^(1−z) z^(1−w) dwdxdydz |
calculate ∫_(−∞) ^(+∞) ((xdx)/((2x+1+i)^3 )) with i^2 =−1 . |
calculate ∫_2 ^5 ((xdx)/(2x+1 +(√(x−1)))) |
calculate ∫_0 ^∞ ((2(√t) +1)/(t^5 +3))dt . |
let f(t) =∫_0 ^∞ e^(−arctsn( 1+tx^2 )) dx with t from R 1) calculate f^′ (t) 2) find a simple form of f(t) . |
∫_0 ^( α) ((tan θ)/(√(a^2 cos^2 θ−b^2 sin^2 θ))) dθ = ? |
∫ ((e^(2x) +1)/(2e^x −1)) dx = ? |
∫((7x−6)/((x^2 +25)(√((x−3)^2 +4)))) dx = ? |
find the value of f(λ) = ∫_(−a) ^a (dx/((λ +_ x^2 )^(3/2) )) λ∈R . |
let f(t) = ∫_0 ^∞ ((e^(−ax) −e^(−bx) )/x^2 ) e^(−tx^2 ) dx with t>0 1) calculate f^′ (t) 2)find a simple form of f(t) 3) find the value of ∫_0 ^∞ ((e^(−2x) −e^(−x) )/x^2 ) e^(−3x^2 ) dx |
![]() |
Pg 284 Pg 285 Pg 286 Pg 287 Pg 288 Pg 289 Pg 290 Pg 291 Pg 292 Pg 293 |