Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 29

Question Number 186736    Answers: 1   Comments: 0

Question Number 186735    Answers: 1   Comments: 0

Question Number 186726    Answers: 2   Comments: 0

Question Number 186637    Answers: 2   Comments: 0

Question Number 186531    Answers: 0   Comments: 0

Q.use the parseval relation of hankel transfrom to evaluate the Integral ∫_0 ^∞ ((J_(𝛄+1) (ar)J_(𝛄+1) (br))/r) , for 𝛄>−(1/2) , 0<a<b where J_n (x) are bessel funtions.

Q.usetheparsevalrelationofhankeltransfromtoevaluatetheIntegral0Jγ+1(ar)Jγ+1(br)r,forγ>12,0<a<bwhereJn(x)arebesselfuntions.

Question Number 186527    Answers: 2   Comments: 0

Question Number 186476    Answers: 0   Comments: 0

Question Number 186347    Answers: 1   Comments: 1

∫_(−2) ^2 ((x^5 − 1 + 2)/(x^4 + x −2)) dx

22x51+2x4+x2dx

Question Number 186346    Answers: 0   Comments: 0

if S_a =cos(a)+sin(x+a) then ∫(S_1 /S_2 )−((x+S_1 )/(x−S_3 ))=?

ifSa=cos(a)+sin(x+a)thenS1S2x+S1xS3=?

Question Number 186321    Answers: 3   Comments: 0

Question Number 186310    Answers: 1   Comments: 0

((∫x(x^2 +5)^(1/2) dx − 3∫x(x^2 +5)^(−1/2) dx)/(∫ ((x[(x^2 +5)−3])/( (√(x^2 +5 )))) dx)) =??

x(x2+5)1/2dx3x(x2+5)1/2dxx[(x2+5)3]x2+5dx=??

Question Number 186306    Answers: 0   Comments: 2

Evaluate ∫((ln(sin x))/(ln(tan x)+1)) dx

Evaluateln(sinx)ln(tanx)+1dx

Question Number 186246    Answers: 1   Comments: 0

Question Number 186352    Answers: 1   Comments: 0

∫_1 ^( 2) ((tan^(−1) (x) + 2)/x^2 ) dx

12tan1(x)+2x2dx

Question Number 186214    Answers: 0   Comments: 12

if S_a =cos(a)+sin(x+a) then ∫(S_1 /S_2 )−((x+S_1 )/(x−S_3 ))dx=?

ifSa=cos(a)+sin(x+a)thenS1S2x+S1xS3dx=?

Question Number 186198    Answers: 1   Comments: 0

∫^3 _2 ((x^2 − 1)/(1 + ^x^2 (√(2 ln(x))))) dx

23x211+x22ln(x)dx

Question Number 186196    Answers: 3   Comments: 2

∫_1 ^2 (((√(1 )) + cos (x))/( (√1) − cos (x))) dx

211+cos(x)1cos(x)dx

Question Number 186195    Answers: 1   Comments: 0

∫_1 ^2 ((1/2 ∙(x^2 ) )/(x (√(x^2 + 2)))) dx

211/2(x2)xx2+2dx

Question Number 186194    Answers: 1   Comments: 2

∫_2 ^4 ((2x^2 − 1)/(1 + (√x^2 ) − 2)) dx

422x211+x22dx

Question Number 186193    Answers: 2   Comments: 0

∫_0 ^1 ((sin (x))/(1 + cos(x))) dx

10sin(x)1+cos(x)dx

Question Number 186192    Answers: 1   Comments: 0

My old problem ∫ e^(tan x) dx

Myoldproblemetanxdx

Question Number 186190    Answers: 0   Comments: 1

My old problem.. ∫_0 ^(+∞) ((tan^(−1) (1−cos(x)))/x^2 ) dx

Myoldproblem..+0tan1(1cos(x))x2dx

Question Number 186181    Answers: 1   Comments: 0

∫_0 ^π (√(1+cos^2 x)) dx =?

π01+cos2xdx=?

Question Number 186171    Answers: 1   Comments: 0

[so easy] ∫ cos^2 (4x) + sin^4 (2x) dx

[soeasy]cos2(4x)+sin4(2x)dx

Question Number 186170    Answers: 1   Comments: 0

∫_(−2) ^2 ((tan^(−1) ( 2 − cos (x)) )/(2 + x^2 )) dx

22tan1(2cos(x))2+x2dx

Question Number 186152    Answers: 1   Comments: 0

I= ∫_2 ^𝛑 ((cos^2 (x) − 1 )/(1 + sin (x) − tan (x))) dx

I=π2cos2(x)11+sin(x)tan(x)dx

  Pg 24      Pg 25      Pg 26      Pg 27      Pg 28      Pg 29      Pg 30      Pg 31      Pg 32      Pg 33   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com