Question and Answers Forum |
IntegrationQuestion and Answers: Page 291 |
find ∫ (dx/(cos(sinx))) |
find F(x)= ∫_0 ^π ln( 1+x sin^2 t)dt with ∣x∣<1 2) calculate ∫_0 ^π ln(1+(1/2)sin^2 t)dt |
find f(x)=∫_0 ^∞ ((arctan(xt))/(1+t^2 ))dt . |
1)find ∫ (√(1+t^2 )) dt 2) calculate ∫_1 ^(√3) (√(1+t^2 )) dt |
let t>0 and F(t) =∫_0 ^∞ ((sin(x^2 ) e^(−tx^2 ) )/x^2 )dx calculate (dF/dt)(t). |
∫∫∫((dxdydz)/((x+y+z+1)^3 )) bounded by the coordinate planes and the plane x+y+z=1 . |
∫(x^2 /((1+x^3 )^2 ))dx |
∫_0 ^π ((cos(x))/(1+2sin(2x)))dx |
![]() |
find ∫_2 ^3 ((2x^2 +3)/((x−1)^2 (x^2 +1))) dx |
find J_(n,p) =∫_0 ^∞ x^n e^(−(x^2 /p)) dx with p>0 and n integr |
∫_(−π/2) ^(+π/2) (√(cos^(2n−1) x−cos^(2n+1) x))dx =[−((2cos^((2n+1)/2) x)/(2n+1))]_(−π/2) ^(+π/2) =0? What is the mistake in above? ∫_(−π/2) ^(+π/2) (√(cos^(2n−1) x−cos^(2n+1) x))dx =2∫_0 ^(π/2) (√(cos^(2n−1) x−cos^(2n+1) x))dx =(4/(2n+1)) (this is correct answer) |
find f(x)=∫_0 ^∞ ((arctan(x(t +(1/t))))/(1+t^2 ))dt |
find the value of f(x) = ∫_0 ^π ((cosx)/(1+2sin(2x)))dx |
Find ∫ Sin^6 x dx |
let A(x)= ∫_0 ^1 ln(1+ix^2 )dx find a simple form of f(x) (x∈R) |
let B(p,q) = ∫_0 ^1 x^(p−1) (1−x)^(q−1) dx calculate B((1/3), (1/3)) 2) calculate B((1/2) ,(2/3)) . |
let I_n = ∫∫_([(1/n),n]^2 ) (((√(xy)) dxdy)/(2 +x^2 +y^2 )) find lim I_n when n→+∞. |
calculate ∫∫_w x(√(x^2 +y^2 )) dxdy w ={(x,y)/ x^2 +y^2 ≤3 } |
calculate ∫∫_(0≤x≤y≤1) ((dxdy)/((x^2 +1)(y^2 +3))) . |
calculate ∫∫_(x^2 +2y^2 ≤1) (x^2 −y^2 )dxdy |
let a>0 calculate ∫∫_(x^2 +y^2 ≤3) (1/(2 +x^2 +y^2 ))dxdy. |
provethat e = Σ_(k=0) ^n (1/(k!)) +∫_0 ^1 (((1−t)^n )/(n!)) e^t dt . |
find ∫_0 ^π ((x sinx)/(1+cos^2 x)) dx |
calculate I(a) =∫_(1/a) ^a ((ln(x))/(1+x^2 )) dx with a>0 2) calculate ∫_0 ^(+∞) ((ln(x))/(1+x^2 )) dx . |
let f(x)= ∫_0 ^1 (e^(−(1+t^2 )x) /(1+t^2 )) dt find a simple form of f(x) |
Pg 286 Pg 287 Pg 288 Pg 289 Pg 290 Pg 291 Pg 292 Pg 293 Pg 294 Pg 295 |