Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 291

Question Number 35048    Answers: 0   Comments: 0

find ∫ (dx/(cos(sinx)))

finddxcos(sinx)

Question Number 35046    Answers: 0   Comments: 0

find F(x)= ∫_0 ^π ln( 1+x sin^2 t)dt with ∣x∣<1 2) calculate ∫_0 ^π ln(1+(1/2)sin^2 t)dt

findF(x)=0πln(1+xsin2t)dtwithx∣<12)calculate0πln(1+12sin2t)dt

Question Number 35045    Answers: 0   Comments: 0

find f(x)=∫_0 ^∞ ((arctan(xt))/(1+t^2 ))dt .

findf(x)=0arctan(xt)1+t2dt.

Question Number 35044    Answers: 1   Comments: 1

1)find ∫ (√(1+t^2 )) dt 2) calculate ∫_1 ^(√3) (√(1+t^2 )) dt

1)find1+t2dt2)calculate131+t2dt

Question Number 35043    Answers: 1   Comments: 0

let t>0 and F(t) =∫_0 ^∞ ((sin(x^2 ) e^(−tx^2 ) )/x^2 )dx calculate (dF/dt)(t).

lett>0andF(t)=0sin(x2)etx2x2dxcalculatedFdt(t).

Question Number 35018    Answers: 1   Comments: 0

∫∫∫((dxdydz)/((x+y+z+1)^3 )) bounded by the coordinate planes and the plane x+y+z=1 .

dxdydz(x+y+z+1)3boundedbythecoordinateplanesandtheplanex+y+z=1.

Question Number 35015    Answers: 2   Comments: 0

∫(x^2 /((1+x^3 )^2 ))dx

x2(1+x3)2dx

Question Number 34992    Answers: 1   Comments: 1

∫_0 ^π ((cos(x))/(1+2sin(2x)))dx

π0cos(x)1+2sin(2x)dx

Question Number 34956    Answers: 3   Comments: 2

Question Number 34911    Answers: 1   Comments: 1

find ∫_2 ^3 ((2x^2 +3)/((x−1)^2 (x^2 +1))) dx

find232x2+3(x1)2(x2+1)dx

Question Number 34910    Answers: 0   Comments: 1

find J_(n,p) =∫_0 ^∞ x^n e^(−(x^2 /p)) dx with p>0 and n integr

findJn,p=0xnex2pdxwithp>0andnintegr

Question Number 34901    Answers: 0   Comments: 3

∫_(−π/2) ^(+π/2) (√(cos^(2n−1) x−cos^(2n+1) x))dx =[−((2cos^((2n+1)/2) x)/(2n+1))]_(−π/2) ^(+π/2) =0? What is the mistake in above? ∫_(−π/2) ^(+π/2) (√(cos^(2n−1) x−cos^(2n+1) x))dx =2∫_0 ^(π/2) (√(cos^(2n−1) x−cos^(2n+1) x))dx =(4/(2n+1)) (this is correct answer)

π/2+π/2cos2n1xcos2n+1xdx=[2cos2n+12x2n+1]π/2+π/2=0?Whatisthemistakeinabove?π/2+π/2cos2n1xcos2n+1xdx=20π/2cos2n1xcos2n+1xdx=42n+1(thisiscorrectanswer)

Question Number 34866    Answers: 0   Comments: 0

find f(x)=∫_0 ^∞ ((arctan(x(t +(1/t))))/(1+t^2 ))dt

findf(x)=0arctan(x(t+1t))1+t2dt

Question Number 34862    Answers: 2   Comments: 8

find the value of f(x) = ∫_0 ^π ((cosx)/(1+2sin(2x)))dx

findthevalueoff(x)=0πcosx1+2sin(2x)dx

Question Number 34827    Answers: 1   Comments: 5

Find ∫ Sin^6 x dx

FindSin6xdx

Question Number 34771    Answers: 0   Comments: 1

let A(x)= ∫_0 ^1 ln(1+ix^2 )dx find a simple form of f(x) (x∈R)

letA(x)=01ln(1+ix2)dxfindasimpleformoff(x)(xR)

Question Number 34720    Answers: 0   Comments: 0

let B(p,q) = ∫_0 ^1 x^(p−1) (1−x)^(q−1) dx calculate B((1/3), (1/3)) 2) calculate B((1/2) ,(2/3)) .

letB(p,q)=01xp1(1x)q1dxcalculateB(13,13)2)calculateB(12,23).

Question Number 34717    Answers: 0   Comments: 1

let I_n = ∫∫_([(1/n),n]^2 ) (((√(xy)) dxdy)/(2 +x^2 +y^2 )) find lim I_n when n→+∞.

letIn=[1n,n]2xydxdy2+x2+y2findlimInwhenn+.

Question Number 34716    Answers: 0   Comments: 1

calculate ∫∫_w x(√(x^2 +y^2 )) dxdy w ={(x,y)/ x^2 +y^2 ≤3 }

calculatewxx2+y2dxdyw={(x,y)/x2+y23}

Question Number 34715    Answers: 0   Comments: 0

calculate ∫∫_(0≤x≤y≤1) ((dxdy)/((x^2 +1)(y^2 +3))) .

calculate0xy1dxdy(x2+1)(y2+3).

Question Number 34714    Answers: 0   Comments: 1

calculate ∫∫_(x^2 +2y^2 ≤1) (x^2 −y^2 )dxdy

calculatex2+2y21(x2y2)dxdy

Question Number 34713    Answers: 0   Comments: 1

let a>0 calculate ∫∫_(x^2 +y^2 ≤3) (1/(2 +x^2 +y^2 ))dxdy.

leta>0calculatex2+y2312+x2+y2dxdy.

Question Number 34675    Answers: 0   Comments: 0

provethat e = Σ_(k=0) ^n (1/(k!)) +∫_0 ^1 (((1−t)^n )/(n!)) e^t dt .

provethate=k=0n1k!+01(1t)nn!etdt.

Question Number 34674    Answers: 0   Comments: 0

find ∫_0 ^π ((x sinx)/(1+cos^2 x)) dx

find0πxsinx1+cos2xdx

Question Number 34662    Answers: 0   Comments: 0

calculate I(a) =∫_(1/a) ^a ((ln(x))/(1+x^2 )) dx with a>0 2) calculate ∫_0 ^(+∞) ((ln(x))/(1+x^2 )) dx .

calculateI(a)=1aaln(x)1+x2dxwitha>02)calculate0+ln(x)1+x2dx.

Question Number 34661    Answers: 0   Comments: 0

let f(x)= ∫_0 ^1 (e^(−(1+t^2 )x) /(1+t^2 )) dt find a simple form of f(x)

letf(x)=01e(1+t2)x1+t2dtfindasimpleformoff(x)

  Pg 286      Pg 287      Pg 288      Pg 289      Pg 290      Pg 291      Pg 292      Pg 293      Pg 294      Pg 295   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com