Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 292

Question Number 34295    Answers: 0   Comments: 0

find ∫_0 ^∞ e^(−n[x]) cos(x)dx with n>0

find0en[x]cos(x)dxwithn>0

Question Number 34294    Answers: 0   Comments: 0

find ∫_0 ^∞ e^(−nx) ∣sinx∣dx with n>0

find0enxsinxdxwithn>0

Question Number 34293    Answers: 0   Comments: 0

calculate ∫∫_D x^2 y dxdy? with D = {(x,y)∈ R^2 / 0≤y≤1−x^2 ,∣x+y +3∣ ≤5}

calculateDx2ydxdy?withD={(x,y)R2/0y1x2,x+y+35}

Question Number 34292    Answers: 0   Comments: 1

calculate ∫∫_w (x+y)e^(x−y) dxdy with w={(x,y)∈R^2 / ∣x∣ ≤1 and ∣y+1∣≤3 }

calculatew(x+y)exydxdywithw={(x,y)R2/x1andy+1∣⩽3}

Question Number 34291    Answers: 0   Comments: 0

let B(x,y) = ∫_0 ^1 u^(x−1) (1−u)^(y−1) du and Γ(x)= ∫_0 ^∞ t^(x−1) e^(−t) dt 1) prove that Γ(x) = 2∫_0 ^∞ u^(2x−1) e^(−u^2 ) du 2)give Γ(x)Γ(y) at form of double integrale 3)prove that B(x,y) =((Γ(x)Γ(y))/(Γ(x+y))) 4) calculate B(m,n) for m and n integr naturals

letB(x,y)=01ux1(1u)y1duandΓ(x)=0tx1etdt1)provethatΓ(x)=20u2x1eu2du2)giveΓ(x)Γ(y)atformofdoubleintegrale3)provethatB(x,y)=Γ(x)Γ(y)Γ(x+y)4)calculateB(m,n)formandnintegrnaturals

Question Number 34290    Answers: 0   Comments: 0

calculate ∫∫_D ((dxdy)/((1+x+y)^2 )) D ={(x,y)∈ R^2 / 1≤x+y≤ 2}

calculateDdxdy(1+x+y)2D={(x,y)R2/1x+y2}

Question Number 34289    Answers: 0   Comments: 1

calculate ∫∫_w (xy −2)dxdy with w = {(x,y)∈R^2 / x≥0 and 1≤y≤2−x }

calculatew(xy2)dxdywithw={(x,y)R2/x0and1y2x}

Question Number 34288    Answers: 0   Comments: 0

calculate ∫∫_w e^(−yx^2 ) (x+y)dxdy with w =[0,1]^2

calculateweyx2(x+y)dxdywithw=[0,1]2

Question Number 34287    Answers: 0   Comments: 0

calculate ∫∫_D xydxdy with D={(x,y)∈R^2 /x≥0 ,y≥0 , x+y ≤ (3/2)}

calculateDxydxdywithD={(x,y)R2/x0,y0,x+y32}

Question Number 34286    Answers: 0   Comments: 2

find ∫ ((artanx)/((1+x)^2 ))dx

findartanx(1+x)2dx

Question Number 34285    Answers: 0   Comments: 3

find ∫ (dx/((1+chx)^2 )) 2) calculate ∫_0 ^1 (dx/((1+chx)^2 ))

finddx(1+chx)22)calculate01dx(1+chx)2

Question Number 34284    Answers: 0   Comments: 1

find ∫ (dt/(sin(2t)))

finddtsin(2t)

Question Number 34283    Answers: 0   Comments: 2

calculate ∫_0 ^(π/2) (dx/(cos^4 x +sin^4 x))

calculate0π2dxcos4x+sin4x

Question Number 34282    Answers: 0   Comments: 1

find ∫_(π/6) ^(π/3) (dx/(cos(x) sin(x)))

findπ6π3dxcos(x)sin(x)

Question Number 34281    Answers: 0   Comments: 0

calculate ∫_1 ^(√3) ((x−1)/(x^2 (x^2 +1)))dx

calculate13x1x2(x2+1)dx

Question Number 34280    Answers: 0   Comments: 0

find ∫ ((ln(x+x^2 ))/x^2 )dx

findln(x+x2)x2dx

Question Number 34279    Answers: 0   Comments: 0

find ∫_1 ^(+∞) (((−1)^([x]) )/x) dx .

find1+(1)[x]xdx.

Question Number 34278    Answers: 0   Comments: 0

find the value of ∫_0 ^∞ (2 +(t+3)ln(((t+2)/(t+4))))dt .

findthevalueof0(2+(t+3)ln(t+2t+4))dt.

Question Number 34277    Answers: 0   Comments: 1

calculate A_n =∫_0 ^∞ (dx/((x+1)(x+2)....(x+n))) n integr≥2 .

calculateAn=0dx(x+1)(x+2)....(x+n)nintegr2.

Question Number 34276    Answers: 0   Comments: 0

nature of ∫_0 ^∞ (dx/(1+x^3 sin^2 x)) ?

natureof0dx1+x3sin2x?

Question Number 34274    Answers: 0   Comments: 0

calculate ∫_2 ^(+∞) ((4x)/(x^4 −1))dx .

calculate2+4xx41dx.

Question Number 34273    Answers: 0   Comments: 0

calculate ∫_0 ^∞ (e^(arctanx) /(1+x^2 ))dx .

calculate0earctanx1+x2dx.

Question Number 34271    Answers: 0   Comments: 0

find lim_(n→+∞) ∫_0 ^∞ ((arctan(nx))/(n(1+x^2 )))dx

findlimn+0arctan(nx)n(1+x2)dx

Question Number 34270    Answers: 0   Comments: 0

let give A_n = ∫_0 ^∞ (dx/((1+x^3 )^n )) 1) calculate A_1 2) for n≥2 find a relation between A_(n+1) and A_n 3) find the value of A_n .

letgiveAn=0dx(1+x3)n1)calculateA12)forn2findarelationbetweenAn+1andAn3)findthevalueofAn.

Question Number 34269    Answers: 0   Comments: 0

calculate I(λ) =∫_0 ^∞ (dx/((1+x^2 )(1+x^λ )))

calculateI(λ)=0dx(1+x2)(1+xλ)

Question Number 34268    Answers: 0   Comments: 0

calculate I = ∫_(−(π/2)) ^(π/2) ln(1+sinx)dx

calculateI=π2π2ln(1+sinx)dx

  Pg 287      Pg 288      Pg 289      Pg 290      Pg 291      Pg 292      Pg 293      Pg 294      Pg 295      Pg 296   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com