Question and Answers Forum |
IntegrationQuestion and Answers: Page 292 |
find ∫_0 ^∞ e^(−n[x]) cos(x)dx with n>0 |
find ∫_0 ^∞ e^(−nx) ∣sinx∣dx with n>0 |
calculate ∫∫_D x^2 y dxdy? with D = {(x,y)∈ R^2 / 0≤y≤1−x^2 ,∣x+y +3∣ ≤5} |
calculate ∫∫_w (x+y)e^(x−y) dxdy with w={(x,y)∈R^2 / ∣x∣ ≤1 and ∣y+1∣≤3 } |
let B(x,y) = ∫_0 ^1 u^(x−1) (1−u)^(y−1) du and Γ(x)= ∫_0 ^∞ t^(x−1) e^(−t) dt 1) prove that Γ(x) = 2∫_0 ^∞ u^(2x−1) e^(−u^2 ) du 2)give Γ(x)Γ(y) at form of double integrale 3)prove that B(x,y) =((Γ(x)Γ(y))/(Γ(x+y))) 4) calculate B(m,n) for m and n integr naturals |
calculate ∫∫_D ((dxdy)/((1+x+y)^2 )) D ={(x,y)∈ R^2 / 1≤x+y≤ 2} |
calculate ∫∫_w (xy −2)dxdy with w = {(x,y)∈R^2 / x≥0 and 1≤y≤2−x } |
calculate ∫∫_w e^(−yx^2 ) (x+y)dxdy with w =[0,1]^2 |
calculate ∫∫_D xydxdy with D={(x,y)∈R^2 /x≥0 ,y≥0 , x+y ≤ (3/2)} |
find ∫ ((artanx)/((1+x)^2 ))dx |
find ∫ (dx/((1+chx)^2 )) 2) calculate ∫_0 ^1 (dx/((1+chx)^2 )) |
find ∫ (dt/(sin(2t))) |
calculate ∫_0 ^(π/2) (dx/(cos^4 x +sin^4 x)) |
find ∫_(π/6) ^(π/3) (dx/(cos(x) sin(x))) |
calculate ∫_1 ^(√3) ((x−1)/(x^2 (x^2 +1)))dx |
find ∫ ((ln(x+x^2 ))/x^2 )dx |
find ∫_1 ^(+∞) (((−1)^([x]) )/x) dx . |
find the value of ∫_0 ^∞ (2 +(t+3)ln(((t+2)/(t+4))))dt . |
calculate A_n =∫_0 ^∞ (dx/((x+1)(x+2)....(x+n))) n integr≥2 . |
nature of ∫_0 ^∞ (dx/(1+x^3 sin^2 x)) ? |
calculate ∫_2 ^(+∞) ((4x)/(x^4 −1))dx . |
calculate ∫_0 ^∞ (e^(arctanx) /(1+x^2 ))dx . |
find lim_(n→+∞) ∫_0 ^∞ ((arctan(nx))/(n(1+x^2 )))dx |
let give A_n = ∫_0 ^∞ (dx/((1+x^3 )^n )) 1) calculate A_1 2) for n≥2 find a relation between A_(n+1) and A_n 3) find the value of A_n . |
calculate I(λ) =∫_0 ^∞ (dx/((1+x^2 )(1+x^λ ))) |
calculate I = ∫_(−(π/2)) ^(π/2) ln(1+sinx)dx |
Pg 287 Pg 288 Pg 289 Pg 290 Pg 291 Pg 292 Pg 293 Pg 294 Pg 295 Pg 296 |