Question and Answers Forum |
IntegrationQuestion and Answers: Page 293 |
1) find the relation between ∫_x ^(+∞) e^(−t^2 ) dt and ∫_x ^(+∞) (e^(−t^2 ) /t^2 )dt 2) guive a equivalent to ∫_x ^(+∞) e^(−t^2 ) dt when x→+∞ |
find the value of ∫_0 ^∞ e^(−2t) sin([t]) dt . |
find the value of ∫_0 ^∞ e^(−2[t]) sint dt |
find the nature of ∫_2 ^(+∞) ((√(1+t^2 +t^4 )) −t ^3 (√(t^3 +at)))dt a∈R . |
study the convergence of ∫_0 ^∞ ((t−sint)/t^a )dt with a real. |
let give a>0 1) find the value of F(a) = ∫_0 ^∞ ((lnt)/(t^2 +a^2 ))dt 2) find the value of G(a)=∫_0 ^∞ ((aln(t))/((t^2 +a^2 )^2 ))dt 3) find the value of ∫_0 ^∞ ((ln(t))/((t^2 +3)^2 ))dt |
find f(x)= ∫_1 ^x (dt/(t(√(1+t^2 )))) 2) calculate I =∫_1 ^(+∞) (dt/(t(√(1+t^2 )))) |
find g(x)= ∫_0 ^∞ ((ln(1+xt^2 ))/t^2 ) dt 2) calculate ∫_0 ^∞ ((ln(1+3t^2 ))/t^2 )dt . |
find I(x)= ∫_0 ^1 ((ln(1+xt^2 ))/t^2 )dt . |
let F(x)= ∫_0 ^x ((ln(1+t^2 ))/t^2 )dt 1) calculate F(x) 2) find the value of ∫_0 ^∞ ((ln(1+t^2 ))/t^2 )dt |
find ∫ (dx/(x^2 −a)) with a ∈ C . |
calculate ∫_(−∞) ^∞ ((cos(tx))/(1+x^4 )) dx with t≥0 2) calculate ∫_0 ^∞ (dx/(1+x^4 )) . |
find the value of ∫_0 ^1 (x^2 /(1+x^4 ))dx |
calculate ∫_0 ^1 arctan(x^2 )dx |
find ∫ (dx/(1+x^2 +x^4 )) |
find ∫ (dx/(x^(2n) −1)) with n integr natural and n≥1 . |
let give the sequence of integrals J_n =∫_0 ^∞ x^n e^(−(x^2 /2)) dx 1) prove that J_n =(n−1)J_(n−2) ∀n≥2 2) calculate J_(2p) and J_(2p+1) by using factoriels. 3) prove that ∀n≥1 J_n ^2 ≤J_(n−1) . J_(n+1) . 4)prove that ((2^(2p) (p!)^2 )/((2p)!)) (1/(√(2p+1))) ≤J_0 ≤ ((2^(2p) (p!)^2 )/((2p)!)) (1/(√(2p))) 5) find a equivalent of ((2^(2p) (p!)^2 )/((2p)!)) (p→+∞) |
study the convergence of ∫_0 ^1 ((√(1−x))/x) dx . |
calculate I = ∫_0 ^(π/4) cosx ln(tanx)dx . |
calculate ∫_0 ^(π/4) (dx/(cos^3 x +sin^3 x)) |
find ∫(√(tanx))dx 2) calculate ∫_0 ^(π/6) (√(tanx)) dx |
let give I =∫_0 ^1 ((ln(x+1))/x)dx and J = ∫_0 ^1 ((ln(1−x))/x)dx 1) prove the existence of I and J 2) calculate I +J and 2I +J 3) find I and J . |
find the value of ∫_0 ^1 ln(x)ln(1+x)dx . |
let give n natural integr not o calculate A_n = ∫_0 ^∞ (dx/(Π_(k=1) ^n (x^2 +k))) . |
![]() |
![]() |
Pg 288 Pg 289 Pg 290 Pg 291 Pg 292 Pg 293 Pg 294 Pg 295 Pg 296 Pg 297 |