Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 293

Question Number 34266    Answers: 0   Comments: 0

1) find the relation between ∫_x ^(+∞) e^(−t^2 ) dt and ∫_x ^(+∞) (e^(−t^2 ) /t^2 )dt 2) guive a equivalent to ∫_x ^(+∞) e^(−t^2 ) dt when x→+∞

1)findtherelationbetweenx+et2dtandx+et2t2dt2)guiveaequivalenttox+et2dtwhenx+

Question Number 34265    Answers: 0   Comments: 0

find the value of ∫_0 ^∞ e^(−2t) sin([t]) dt .

findthevalueof0e2tsin([t])dt.

Question Number 34264    Answers: 0   Comments: 0

find the value of ∫_0 ^∞ e^(−2[t]) sint dt

findthevalueof0e2[t]sintdt

Question Number 34262    Answers: 0   Comments: 0

find the nature of ∫_2 ^(+∞) ((√(1+t^2 +t^4 )) −t ^3 (√(t^3 +at)))dt a∈R .

findthenatureof2+(1+t2+t4t3t3+at)dtaR.

Question Number 34261    Answers: 0   Comments: 0

study the convergence of ∫_0 ^∞ ((t−sint)/t^a )dt with a real.

studytheconvergenceof0tsinttadtwithareal.

Question Number 34260    Answers: 0   Comments: 0

let give a>0 1) find the value of F(a) = ∫_0 ^∞ ((lnt)/(t^2 +a^2 ))dt 2) find the value of G(a)=∫_0 ^∞ ((aln(t))/((t^2 +a^2 )^2 ))dt 3) find the value of ∫_0 ^∞ ((ln(t))/((t^2 +3)^2 ))dt

letgivea>01)findthevalueofF(a)=0lntt2+a2dt2)findthevalueofG(a)=0aln(t)(t2+a2)2dt3)findthevalueof0ln(t)(t2+3)2dt

Question Number 34257    Answers: 0   Comments: 0

find f(x)= ∫_1 ^x (dt/(t(√(1+t^2 )))) 2) calculate I =∫_1 ^(+∞) (dt/(t(√(1+t^2 ))))

findf(x)=1xdtt1+t22)calculateI=1+dtt1+t2

Question Number 34255    Answers: 0   Comments: 0

find g(x)= ∫_0 ^∞ ((ln(1+xt^2 ))/t^2 ) dt 2) calculate ∫_0 ^∞ ((ln(1+3t^2 ))/t^2 )dt .

findg(x)=0ln(1+xt2)t2dt2)calculate0ln(1+3t2)t2dt.

Question Number 34254    Answers: 0   Comments: 0

find I(x)= ∫_0 ^1 ((ln(1+xt^2 ))/t^2 )dt .

findI(x)=01ln(1+xt2)t2dt.

Question Number 34253    Answers: 0   Comments: 0

let F(x)= ∫_0 ^x ((ln(1+t^2 ))/t^2 )dt 1) calculate F(x) 2) find the value of ∫_0 ^∞ ((ln(1+t^2 ))/t^2 )dt

letF(x)=0xln(1+t2)t2dt1)calculateF(x)2)findthevalueof0ln(1+t2)t2dt

Question Number 34237    Answers: 0   Comments: 4

find ∫ (dx/(x^2 −a)) with a ∈ C .

finddxx2awithaC.

Question Number 34229    Answers: 2   Comments: 3

calculate ∫_(−∞) ^∞ ((cos(tx))/(1+x^4 )) dx with t≥0 2) calculate ∫_0 ^∞ (dx/(1+x^4 )) .

calculatecos(tx)1+x4dxwitht02)calculate0dx1+x4.

Question Number 34228    Answers: 0   Comments: 1

find the value of ∫_0 ^1 (x^2 /(1+x^4 ))dx

findthevalueof01x21+x4dx

Question Number 34227    Answers: 1   Comments: 2

calculate ∫_0 ^1 arctan(x^2 )dx

calculate01arctan(x2)dx

Question Number 34225    Answers: 1   Comments: 0

find ∫ (dx/(1+x^2 +x^4 ))

finddx1+x2+x4

Question Number 34223    Answers: 0   Comments: 0

find ∫ (dx/(x^(2n) −1)) with n integr natural and n≥1 .

finddxx2n1withnintegrnaturalandn1.

Question Number 34222    Answers: 0   Comments: 4

let give the sequence of integrals J_n =∫_0 ^∞ x^n e^(−(x^2 /2)) dx 1) prove that J_n =(n−1)J_(n−2) ∀n≥2 2) calculate J_(2p) and J_(2p+1) by using factoriels. 3) prove that ∀n≥1 J_n ^2 ≤J_(n−1) . J_(n+1) . 4)prove that ((2^(2p) (p!)^2 )/((2p)!)) (1/(√(2p+1))) ≤J_0 ≤ ((2^(2p) (p!)^2 )/((2p)!)) (1/(√(2p))) 5) find a equivalent of ((2^(2p) (p!)^2 )/((2p)!)) (p→+∞)

letgivethesequenceofintegralsJn=0xnex22dx1)provethatJn=(n1)Jn2n22)calculateJ2pandJ2p+1byusingfactoriels.3)provethatn1Jn2Jn1.Jn+1.4)provethat22p(p!)2(2p)!12p+1J022p(p!)2(2p)!12p5)findaequivalentof22p(p!)2(2p)!(p+)

Question Number 34221    Answers: 1   Comments: 1

study the convergence of ∫_0 ^1 ((√(1−x))/x) dx .

studytheconvergenceof011xxdx.

Question Number 34220    Answers: 0   Comments: 0

calculate I = ∫_0 ^(π/4) cosx ln(tanx)dx .

calculateI=0π4cosxln(tanx)dx.

Question Number 34219    Answers: 0   Comments: 1

calculate ∫_0 ^(π/4) (dx/(cos^3 x +sin^3 x))

calculate0π4dxcos3x+sin3x

Question Number 34218    Answers: 0   Comments: 0

find ∫(√(tanx))dx 2) calculate ∫_0 ^(π/6) (√(tanx)) dx

findtanxdx2)calculate0π6tanxdx

Question Number 34216    Answers: 0   Comments: 0

let give I =∫_0 ^1 ((ln(x+1))/x)dx and J = ∫_0 ^1 ((ln(1−x))/x)dx 1) prove the existence of I and J 2) calculate I +J and 2I +J 3) find I and J .

letgiveI=01ln(x+1)xdxandJ=01ln(1x)xdx1)provetheexistenceofIandJ2)calculateI+Jand2I+J3)findIandJ.

Question Number 34129    Answers: 2   Comments: 2

find the value of ∫_0 ^1 ln(x)ln(1+x)dx .

findthevalueof01ln(x)ln(1+x)dx.

Question Number 34126    Answers: 0   Comments: 0

let give n natural integr not o calculate A_n = ∫_0 ^∞ (dx/(Π_(k=1) ^n (x^2 +k))) .

letgivennaturalintegrnotocalculateAn=0dxk=1n(x2+k).

Question Number 34110    Answers: 0   Comments: 2

Question Number 34109    Answers: 0   Comments: 0

  Pg 288      Pg 289      Pg 290      Pg 291      Pg 292      Pg 293      Pg 294      Pg 295      Pg 296      Pg 297   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com