Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 294

Question Number 34771    Answers: 0   Comments: 1

let A(x)= ∫_0 ^1 ln(1+ix^2 )dx find a simple form of f(x) (x∈R)

letA(x)=01ln(1+ix2)dxfindasimpleformoff(x)(xR)

Question Number 34720    Answers: 0   Comments: 0

let B(p,q) = ∫_0 ^1 x^(p−1) (1−x)^(q−1) dx calculate B((1/3), (1/3)) 2) calculate B((1/2) ,(2/3)) .

letB(p,q)=01xp1(1x)q1dxcalculateB(13,13)2)calculateB(12,23).

Question Number 34717    Answers: 0   Comments: 1

let I_n = ∫∫_([(1/n),n]^2 ) (((√(xy)) dxdy)/(2 +x^2 +y^2 )) find lim I_n when n→+∞.

letIn=[1n,n]2xydxdy2+x2+y2findlimInwhenn+.

Question Number 34716    Answers: 0   Comments: 1

calculate ∫∫_w x(√(x^2 +y^2 )) dxdy w ={(x,y)/ x^2 +y^2 ≤3 }

calculatewxx2+y2dxdyw={(x,y)/x2+y23}

Question Number 34715    Answers: 0   Comments: 0

calculate ∫∫_(0≤x≤y≤1) ((dxdy)/((x^2 +1)(y^2 +3))) .

calculate0xy1dxdy(x2+1)(y2+3).

Question Number 34714    Answers: 0   Comments: 1

calculate ∫∫_(x^2 +2y^2 ≤1) (x^2 −y^2 )dxdy

calculatex2+2y21(x2y2)dxdy

Question Number 34713    Answers: 0   Comments: 1

let a>0 calculate ∫∫_(x^2 +y^2 ≤3) (1/(2 +x^2 +y^2 ))dxdy.

leta>0calculatex2+y2312+x2+y2dxdy.

Question Number 34675    Answers: 0   Comments: 0

provethat e = Σ_(k=0) ^n (1/(k!)) +∫_0 ^1 (((1−t)^n )/(n!)) e^t dt .

provethate=k=0n1k!+01(1t)nn!etdt.

Question Number 34674    Answers: 0   Comments: 0

find ∫_0 ^π ((x sinx)/(1+cos^2 x)) dx

find0πxsinx1+cos2xdx

Question Number 34662    Answers: 0   Comments: 0

calculate I(a) =∫_(1/a) ^a ((ln(x))/(1+x^2 )) dx with a>0 2) calculate ∫_0 ^(+∞) ((ln(x))/(1+x^2 )) dx .

calculateI(a)=1aaln(x)1+x2dxwitha>02)calculate0+ln(x)1+x2dx.

Question Number 34661    Answers: 0   Comments: 0

let f(x)= ∫_0 ^1 (e^(−(1+t^2 )x) /(1+t^2 )) dt find a simple form of f(x)

letf(x)=01e(1+t2)x1+t2dtfindasimpleformoff(x)

Question Number 34635    Answers: 2   Comments: 4

calculate A(α) = ∫_0 ^1 ln(1+αix)dx 2) calculate ∫_0 ^1 ln(1+ix) dx (i^2 =−1)

calculateA(α)=01ln(1+αix)dx2)calculate01ln(1+ix)dx(i2=1)

Question Number 34633    Answers: 0   Comments: 0

let f(α) = ∫_(−∞) ^(+∞) ((arctan(1+αxi))/(1+x^2 ))dx find f(α) .

letf(α)=+arctan(1+αxi)1+x2dxfindf(α).

Question Number 34593    Answers: 0   Comments: 0

1) calculate ∫_(−∞) ^(+∞) ((cos(αx^n ))/(x^2 +x +1)) dx with n integr natural 2) find the value of ∫_(−∞) ^∞ ((cos( α x^(2n) ))/(x^2 +x +1))dx 3) calculate ∫_(−∞) ^(+∞) ((cos(π x^3 ))/(x^2 +x +1)) dx

1)calculate+cos(αxn)x2+x+1dxwithnintegrnatural2)findthevalueofcos(αx2n)x2+x+1dx3)calculate+cos(πx3)x2+x+1dx

Question Number 34562    Answers: 1   Comments: 1

find the value of ∫_0 ^1 ((arctanx)/((1+x^2 )^2 )) dx

findthevalueof01arctanx(1+x2)2dx

Question Number 34561    Answers: 0   Comments: 1

find the value of ∫_0 ^(+∞) ((arctan(x))/((1+x^2 )^2 )) dx

findthevalueof0+arctan(x)(1+x2)2dx

Question Number 34985    Answers: 1   Comments: 0

Question Number 34421    Answers: 0   Comments: 1

let A = ∫_(−∞) ^(+∞) (dx/(x^2 −j)) with j=e^(i((2π)/3)) extract ReA and Im(A) and calculste its values.

letA=+dxx2jwithj=ei2π3extractReAandIm(A)andcalculsteitsvalues.

Question Number 34320    Answers: 0   Comments: 2

calculate ∫_(−∞) ^(+∞) (dx/(x^2 +1 −i))

calculate+dxx2+1i

Question Number 34316    Answers: 0   Comments: 0

find a eajivalent of u_n = ∫_0 ^∞ e^(−(t/n)) arcctant dt .

findaeajivalentofun=0etnarcctantdt.

Question Number 34315    Answers: 0   Comments: 2

1) find F(x)= ∫_0 ^(+∞) ((e^(−at) −e^(−bt) )/t)sin(xt)dt with a>0 ,b>0 .

1)findF(x)=0+eatebttsin(xt)dtwitha>0,b>0.

Question Number 34314    Answers: 0   Comments: 1

let f(x)= ∫_0 ^(+∞) ((1−cos(xt))/t^2 ) e^(−t) dt calculate f(x) .

letf(x)=0+1cos(xt)t2etdtcalculatef(x).

Question Number 34312    Answers: 0   Comments: 1

calculate I = ∫∫_D x^3 dxdy on the domain D ={(x,y)∈R^2 /1≤x≤2 , x^2 −y^2 −1≥0}

calculateI=Dx3dxdyonthedomainD={(x,y)R2/1x2,x2y210}

Question Number 34308    Answers: 0   Comments: 0

let I = ∫_0 ^(+∞) (((1+x)^(−(1/4)) −(1+x)^(−(3/4)) )/x)dx prove that I isconvergent and find its value .

letI=0+(1+x)14(1+x)34xdxprovethatIisconvergentandfinditsvalue.

Question Number 34298    Answers: 0   Comments: 2

let A_ = ∫_0 ^∞ e^(−x) cos[x]dx and B = ∫_0 ^∞ e^(−[x]) cosxdx calculate A−B .

letA=0excos[x]dxandB=0e[x]cosxdxcalculateAB.

Question Number 34297    Answers: 1   Comments: 1

find ∫_(−∞) ^(+∞) e^(−z t^2 ) dt with z=r e^(iθ) ∈ C .

find+ezt2dtwithz=reiθC.

  Pg 289      Pg 290      Pg 291      Pg 292      Pg 293      Pg 294      Pg 295      Pg 296      Pg 297      Pg 298   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com