Question and Answers Forum |
IntegrationQuestion and Answers: Page 295 |
find ∫ ((artanx)/((1+x)^2 ))dx |
find ∫ (dx/((1+chx)^2 )) 2) calculate ∫_0 ^1 (dx/((1+chx)^2 )) |
find ∫ (dt/(sin(2t))) |
calculate ∫_0 ^(π/2) (dx/(cos^4 x +sin^4 x)) |
find ∫_(π/6) ^(π/3) (dx/(cos(x) sin(x))) |
calculate ∫_1 ^(√3) ((x−1)/(x^2 (x^2 +1)))dx |
find ∫ ((ln(x+x^2 ))/x^2 )dx |
find ∫_1 ^(+∞) (((−1)^([x]) )/x) dx . |
find the value of ∫_0 ^∞ (2 +(t+3)ln(((t+2)/(t+4))))dt . |
calculate A_n =∫_0 ^∞ (dx/((x+1)(x+2)....(x+n))) n integr≥2 . |
nature of ∫_0 ^∞ (dx/(1+x^3 sin^2 x)) ? |
calculate ∫_2 ^(+∞) ((4x)/(x^4 −1))dx . |
calculate ∫_0 ^∞ (e^(arctanx) /(1+x^2 ))dx . |
find lim_(n→+∞) ∫_0 ^∞ ((arctan(nx))/(n(1+x^2 )))dx |
let give A_n = ∫_0 ^∞ (dx/((1+x^3 )^n )) 1) calculate A_1 2) for n≥2 find a relation between A_(n+1) and A_n 3) find the value of A_n . |
calculate I(λ) =∫_0 ^∞ (dx/((1+x^2 )(1+x^λ ))) |
calculate I = ∫_(−(π/2)) ^(π/2) ln(1+sinx)dx |
1) find the relation between ∫_x ^(+∞) e^(−t^2 ) dt and ∫_x ^(+∞) (e^(−t^2 ) /t^2 )dt 2) guive a equivalent to ∫_x ^(+∞) e^(−t^2 ) dt when x→+∞ |
find the value of ∫_0 ^∞ e^(−2t) sin([t]) dt . |
find the value of ∫_0 ^∞ e^(−2[t]) sint dt |
find the nature of ∫_2 ^(+∞) ((√(1+t^2 +t^4 )) −t ^3 (√(t^3 +at)))dt a∈R . |
study the convergence of ∫_0 ^∞ ((t−sint)/t^a )dt with a real. |
let give a>0 1) find the value of F(a) = ∫_0 ^∞ ((lnt)/(t^2 +a^2 ))dt 2) find the value of G(a)=∫_0 ^∞ ((aln(t))/((t^2 +a^2 )^2 ))dt 3) find the value of ∫_0 ^∞ ((ln(t))/((t^2 +3)^2 ))dt |
find f(x)= ∫_1 ^x (dt/(t(√(1+t^2 )))) 2) calculate I =∫_1 ^(+∞) (dt/(t(√(1+t^2 )))) |
find g(x)= ∫_0 ^∞ ((ln(1+xt^2 ))/t^2 ) dt 2) calculate ∫_0 ^∞ ((ln(1+3t^2 ))/t^2 )dt . |
find I(x)= ∫_0 ^1 ((ln(1+xt^2 ))/t^2 )dt . |
Pg 290 Pg 291 Pg 292 Pg 293 Pg 294 Pg 295 Pg 296 Pg 297 Pg 298 Pg 299 |