Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 295

Question Number 34286    Answers: 0   Comments: 2

find ∫ ((artanx)/((1+x)^2 ))dx

findartanx(1+x)2dx

Question Number 34285    Answers: 0   Comments: 3

find ∫ (dx/((1+chx)^2 )) 2) calculate ∫_0 ^1 (dx/((1+chx)^2 ))

finddx(1+chx)22)calculate01dx(1+chx)2

Question Number 34284    Answers: 0   Comments: 1

find ∫ (dt/(sin(2t)))

finddtsin(2t)

Question Number 34283    Answers: 0   Comments: 2

calculate ∫_0 ^(π/2) (dx/(cos^4 x +sin^4 x))

calculate0π2dxcos4x+sin4x

Question Number 34282    Answers: 0   Comments: 1

find ∫_(π/6) ^(π/3) (dx/(cos(x) sin(x)))

findπ6π3dxcos(x)sin(x)

Question Number 34281    Answers: 0   Comments: 0

calculate ∫_1 ^(√3) ((x−1)/(x^2 (x^2 +1)))dx

calculate13x1x2(x2+1)dx

Question Number 34280    Answers: 0   Comments: 0

find ∫ ((ln(x+x^2 ))/x^2 )dx

findln(x+x2)x2dx

Question Number 34279    Answers: 0   Comments: 0

find ∫_1 ^(+∞) (((−1)^([x]) )/x) dx .

find1+(1)[x]xdx.

Question Number 34278    Answers: 0   Comments: 0

find the value of ∫_0 ^∞ (2 +(t+3)ln(((t+2)/(t+4))))dt .

findthevalueof0(2+(t+3)ln(t+2t+4))dt.

Question Number 34277    Answers: 0   Comments: 1

calculate A_n =∫_0 ^∞ (dx/((x+1)(x+2)....(x+n))) n integr≥2 .

calculateAn=0dx(x+1)(x+2)....(x+n)nintegr2.

Question Number 34276    Answers: 0   Comments: 0

nature of ∫_0 ^∞ (dx/(1+x^3 sin^2 x)) ?

natureof0dx1+x3sin2x?

Question Number 34274    Answers: 0   Comments: 0

calculate ∫_2 ^(+∞) ((4x)/(x^4 −1))dx .

calculate2+4xx41dx.

Question Number 34273    Answers: 0   Comments: 0

calculate ∫_0 ^∞ (e^(arctanx) /(1+x^2 ))dx .

calculate0earctanx1+x2dx.

Question Number 34271    Answers: 0   Comments: 0

find lim_(n→+∞) ∫_0 ^∞ ((arctan(nx))/(n(1+x^2 )))dx

findlimn+0arctan(nx)n(1+x2)dx

Question Number 34270    Answers: 0   Comments: 0

let give A_n = ∫_0 ^∞ (dx/((1+x^3 )^n )) 1) calculate A_1 2) for n≥2 find a relation between A_(n+1) and A_n 3) find the value of A_n .

letgiveAn=0dx(1+x3)n1)calculateA12)forn2findarelationbetweenAn+1andAn3)findthevalueofAn.

Question Number 34269    Answers: 0   Comments: 0

calculate I(λ) =∫_0 ^∞ (dx/((1+x^2 )(1+x^λ )))

calculateI(λ)=0dx(1+x2)(1+xλ)

Question Number 34268    Answers: 0   Comments: 0

calculate I = ∫_(−(π/2)) ^(π/2) ln(1+sinx)dx

calculateI=π2π2ln(1+sinx)dx

Question Number 34266    Answers: 0   Comments: 0

1) find the relation between ∫_x ^(+∞) e^(−t^2 ) dt and ∫_x ^(+∞) (e^(−t^2 ) /t^2 )dt 2) guive a equivalent to ∫_x ^(+∞) e^(−t^2 ) dt when x→+∞

1)findtherelationbetweenx+et2dtandx+et2t2dt2)guiveaequivalenttox+et2dtwhenx+

Question Number 34265    Answers: 0   Comments: 0

find the value of ∫_0 ^∞ e^(−2t) sin([t]) dt .

findthevalueof0e2tsin([t])dt.

Question Number 34264    Answers: 0   Comments: 0

find the value of ∫_0 ^∞ e^(−2[t]) sint dt

findthevalueof0e2[t]sintdt

Question Number 34262    Answers: 0   Comments: 0

find the nature of ∫_2 ^(+∞) ((√(1+t^2 +t^4 )) −t ^3 (√(t^3 +at)))dt a∈R .

findthenatureof2+(1+t2+t4t3t3+at)dtaR.

Question Number 34261    Answers: 0   Comments: 0

study the convergence of ∫_0 ^∞ ((t−sint)/t^a )dt with a real.

studytheconvergenceof0tsinttadtwithareal.

Question Number 34260    Answers: 0   Comments: 0

let give a>0 1) find the value of F(a) = ∫_0 ^∞ ((lnt)/(t^2 +a^2 ))dt 2) find the value of G(a)=∫_0 ^∞ ((aln(t))/((t^2 +a^2 )^2 ))dt 3) find the value of ∫_0 ^∞ ((ln(t))/((t^2 +3)^2 ))dt

letgivea>01)findthevalueofF(a)=0lntt2+a2dt2)findthevalueofG(a)=0aln(t)(t2+a2)2dt3)findthevalueof0ln(t)(t2+3)2dt

Question Number 34257    Answers: 0   Comments: 0

find f(x)= ∫_1 ^x (dt/(t(√(1+t^2 )))) 2) calculate I =∫_1 ^(+∞) (dt/(t(√(1+t^2 ))))

findf(x)=1xdtt1+t22)calculateI=1+dtt1+t2

Question Number 34255    Answers: 0   Comments: 0

find g(x)= ∫_0 ^∞ ((ln(1+xt^2 ))/t^2 ) dt 2) calculate ∫_0 ^∞ ((ln(1+3t^2 ))/t^2 )dt .

findg(x)=0ln(1+xt2)t2dt2)calculate0ln(1+3t2)t2dt.

Question Number 34254    Answers: 0   Comments: 0

find I(x)= ∫_0 ^1 ((ln(1+xt^2 ))/t^2 )dt .

findI(x)=01ln(1+xt2)t2dt.

  Pg 290      Pg 291      Pg 292      Pg 293      Pg 294      Pg 295      Pg 296      Pg 297      Pg 298      Pg 299   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com