Question and Answers Forum |
IntegrationQuestion and Answers: Page 296 |
let Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt with x>0 1) prove that Γ(x)Γ(1−x)= (π/(sin(πx))) 2) find the value of ∫_0 ^∞ e^(−x^2 ) dx . |
1)let f R→C 2π periodic even /f(x)=x ∀ x∈[0,π[ developp f at fourier serie 2) calculate Σ_(p=0) ^∞ (1/((2p+1)^2 )) . |
developp at integr serie f(x)= ∫_0 ^(π/2) (dt/(√(1−x^2 sin^2 t))) . with ∣x∣<1 . |
developp at integr serie f(x)= ∫_0 ^x sin(t^2 )dt . |
let F(x)= ∫_0 ^(π/2) ((arctan(xtant))/(tant)) dt find a simple form of f(x) . 2) find the value of ∫_0 ^(π/2) ((arctan(2tant))/(tant))dt . |
find a simple form of f(x)=∫_0 ^(π/2) ln(1+xsin^2 t)dt with ∣x∣<1. |
let I_n = ∫_0 ^1 ((arctan(1 +n))/(√(1+x^n ))) find lim_(n→+∞) I_n . |
find the value of ∫_(−∞) ^(+∞) ((cos(πx))/((x^2 +1+i)^2 )) dx |
lim_(n→∞) ((1/n) ∫_1 ^n n^(1/x) dx) |
solve : I = ∫_0 ^π (((r−R cosθ) sin θ )/((R^(2 ) + r^2 − 2Rr cos θ)^(3/2) )) dθ for r < R and r > R respectively. |
solve : ∫_(−π/2) ^(π/2) ((sin θ )/(√( R^2 + r^2 − 2rR cos θ))) dθ |
Calculate ∫_(−∞) ^(+∞) e^(−x^2 ) dx using Residue theorem |
let P_n (x)=(1+x^2 )(1+x^4 )....(1+x^2^n ) calculate lim_(n→+∞) ∫_0 ^x P_n (t)dt with 0<x<1 . |
find the value of ∫_0 ^∞ ((cos(xt))/((t^2 + x^2 )^2 )) dt . |
find the value of ∫_(−∞) ^(+∞) (x^2 /((1+x +x^2 )^2 ))dx |
calculate ∫_0 ^∞ ((cos(2x)dx)/((x^2 +1)( 2x^2 +3))) . |
let α>0 find the fourier transform of f(t) = e^(−a^2 t^2 ) |
let f(t) = (1/(a^2 +t^2 )) witha>0 give the fourier transformfor f . |
give ∫_0 ^∞ ((x e^(−x) )/(1 −e^(−2x) )) sin(πx)dx at form of serie. |
find lim_(n→+∞) ∫_0 ^∞ (e^(−(x/n)) /(1+x^2 ))dx. |
calculate lim_(n→+∞) ∫_0 ^∞ (dx/(x^n +e^x )) . |
∫(x/(x^3 +1))dx |
calculate ∫_0 ^1 ((xlnx)/(x−1))dx . |
∫x^(5/2) (1−x)^(3/2) dx |
calculatef(a)= ∫_(−a) ^a (dx/((t^2 +x^2 )^(3/2) )) with a>0 . |
let α >1 calculate f(α) = ∫_α ^(+∞) ((x^2 −x+1)/((x−1)^2 (x+1)^2 )) dx . |
Pg 291 Pg 292 Pg 293 Pg 294 Pg 295 Pg 296 Pg 297 Pg 298 Pg 299 Pg 300 |