Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 296

Question Number 33895    Answers: 3   Comments: 0

let Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt with x>0 1) prove that Γ(x)Γ(1−x)= (π/(sin(πx))) 2) find the value of ∫_0 ^∞ e^(−x^2 ) dx .

letΓ(x)=0tx1etdtwithx>01)provethatΓ(x)Γ(1x)=πsin(πx)2)findthevalueof0ex2dx.

Question Number 33894    Answers: 0   Comments: 1

1)let f R→C 2π periodic even /f(x)=x ∀ x∈[0,π[ developp f at fourier serie 2) calculate Σ_(p=0) ^∞ (1/((2p+1)^2 )) .

1)letfRC2πperiodiceven/f(x)=xx[0,π[developpfatfourierserie2)calculatep=01(2p+1)2.

Question Number 33888    Answers: 0   Comments: 0

developp at integr serie f(x)= ∫_0 ^(π/2) (dt/(√(1−x^2 sin^2 t))) . with ∣x∣<1 .

developpatintegrserief(x)=0π2dt1x2sin2t.withx∣<1.

Question Number 33885    Answers: 0   Comments: 1

developp at integr serie f(x)= ∫_0 ^x sin(t^2 )dt .

developpatintegrserief(x)=0xsin(t2)dt.

Question Number 33884    Answers: 0   Comments: 1

let F(x)= ∫_0 ^(π/2) ((arctan(xtant))/(tant)) dt find a simple form of f(x) . 2) find the value of ∫_0 ^(π/2) ((arctan(2tant))/(tant))dt .

letF(x)=0π2arctan(xtant)tantdtfindasimpleformoff(x).2)findthevalueof0π2arctan(2tant)tantdt.

Question Number 33883    Answers: 0   Comments: 1

find a simple form of f(x)=∫_0 ^(π/2) ln(1+xsin^2 t)dt with ∣x∣<1.

findasimpleformoff(x)=0π2ln(1+xsin2t)dtwithx∣<1.

Question Number 33845    Answers: 0   Comments: 1

let I_n = ∫_0 ^1 ((arctan(1 +n))/(√(1+x^n ))) find lim_(n→+∞) I_n .

letIn=01arctan(1+n)1+xnfindlimn+In.

Question Number 33835    Answers: 0   Comments: 1

find the value of ∫_(−∞) ^(+∞) ((cos(πx))/((x^2 +1+i)^2 )) dx

findthevalueof+cos(πx)(x2+1+i)2dx

Question Number 33787    Answers: 0   Comments: 0

lim_(n→∞) ((1/n) ∫_1 ^n n^(1/x) dx)

limn(1nn1n1xdx)

Question Number 33823    Answers: 1   Comments: 0

solve : I = ∫_0 ^π (((r−R cosθ) sin θ )/((R^(2 ) + r^2 − 2Rr cos θ)^(3/2) )) dθ for r < R and r > R respectively.

solve:I=π0(rRcosθ)sinθ(R2+r22Rrcosθ)3/2dθforr<Randr>Rrespectively.

Question Number 33759    Answers: 0   Comments: 9

solve : ∫_(−π/2) ^(π/2) ((sin θ )/(√( R^2 + r^2 − 2rR cos θ))) dθ

solve:π/2π/2sinθR2+r22rRcosθdθ

Question Number 33747    Answers: 0   Comments: 0

Calculate ∫_(−∞) ^(+∞) e^(−x^2 ) dx using Residue theorem

Calculate+ex2dxusingResiduetheorem

Question Number 33744    Answers: 0   Comments: 1

let P_n (x)=(1+x^2 )(1+x^4 )....(1+x^2^n ) calculate lim_(n→+∞) ∫_0 ^x P_n (t)dt with 0<x<1 .

letPn(x)=(1+x2)(1+x4)....(1+x2n)calculatelimn+0xPn(t)dtwith0<x<1.

Question Number 33737    Answers: 1   Comments: 3

find the value of ∫_0 ^∞ ((cos(xt))/((t^2 + x^2 )^2 )) dt .

findthevalueof0cos(xt)(t2+x2)2dt.

Question Number 33736    Answers: 2   Comments: 1

find the value of ∫_(−∞) ^(+∞) (x^2 /((1+x +x^2 )^2 ))dx

findthevalueof+x2(1+x+x2)2dx

Question Number 33735    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((cos(2x)dx)/((x^2 +1)( 2x^2 +3))) .

calculate0cos(2x)dx(x2+1)(2x2+3).

Question Number 33705    Answers: 1   Comments: 1

let α>0 find the fourier transform of f(t) = e^(−a^2 t^2 )

letα>0findthefouriertransformoff(t)=ea2t2

Question Number 33704    Answers: 0   Comments: 1

let f(t) = (1/(a^2 +t^2 )) witha>0 give the fourier transformfor f .

letf(t)=1a2+t2witha>0givethefouriertransformforf.

Question Number 33703    Answers: 0   Comments: 0

give ∫_0 ^∞ ((x e^(−x) )/(1 −e^(−2x) )) sin(πx)dx at form of serie.

give0xex1e2xsin(πx)dxatformofserie.

Question Number 33695    Answers: 0   Comments: 1

find lim_(n→+∞) ∫_0 ^∞ (e^(−(x/n)) /(1+x^2 ))dx.

findlimn+0exn1+x2dx.

Question Number 33694    Answers: 0   Comments: 1

calculate lim_(n→+∞) ∫_0 ^∞ (dx/(x^n +e^x )) .

calculatelimn+0dxxn+ex.

Question Number 33689    Answers: 2   Comments: 1

∫(x/(x^3 +1))dx

xx3+1dx

Question Number 33677    Answers: 0   Comments: 1

calculate ∫_0 ^1 ((xlnx)/(x−1))dx .

calculate01xlnxx1dx.

Question Number 33619    Answers: 1   Comments: 3

∫x^(5/2) (1−x)^(3/2) dx

x5/2(1x)3/2dx

Question Number 33599    Answers: 1   Comments: 2

calculatef(a)= ∫_(−a) ^a (dx/((t^2 +x^2 )^(3/2) )) with a>0 .

calculatef(a)=aadx(t2+x2)32witha>0.

Question Number 33590    Answers: 0   Comments: 1

let α >1 calculate f(α) = ∫_α ^(+∞) ((x^2 −x+1)/((x−1)^2 (x+1)^2 )) dx .

letα>1calculatef(α)=α+x2x+1(x1)2(x+1)2dx.

  Pg 291      Pg 292      Pg 293      Pg 294      Pg 295      Pg 296      Pg 297      Pg 298      Pg 299      Pg 300   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com