Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 297

Question Number 33258    Answers: 0   Comments: 0

if (1/(1+cosx)) = (a_0 /2) +Σ_(n≥1) a_n cos(nx) calculate a_0 and a_n

if11+cosx=a02+n1ancos(nx)calculatea0andan

Question Number 33257    Answers: 0   Comments: 1

let g(x)= (1/(1+x^4 )) 1) find g^((n)) (x) 2) calculate g^((n)) (0) 3) if g(x)=Σ u_n x^n find the sequence u_n

letg(x)=11+x41)findg(n)(x)2)calculateg(n)(0)3)ifg(x)=Σunxnfindthesequenceun

Question Number 33222    Answers: 0   Comments: 0

let give n ≥3 integr calculate I_n = ∫_(−∞) ^(+∞) (dx/(1+x +x^2 +....+x^(n−1) ))

letgiven3integrcalculateIn=+dx1+x+x2+....+xn1

Question Number 33223    Answers: 0   Comments: 0

let A_n =∫_(−∞) ^(+∞) (e^(iπx) /(1+x+x^2 +...x^(n−1) )) with n≥3 integr find the value of A_n .

letAn=+eiπx1+x+x2+...xn1withn3integrfindthevalueofAn.

Question Number 33210    Answers: 0   Comments: 0

find lim_(x→+∞) x e^(−x^2 ) ∫^(x−1) _0 e^t^2 dt

findlimx+xex20x1et2dt

Question Number 33204    Answers: 0   Comments: 1

find the value of ∫_(−∞) ^(+∞) ((cos(ax))/(1+x+x^2 )) dx.

findthevalueof+cos(ax)1+x+x2dx.

Question Number 33232    Answers: 0   Comments: 1

find the value of ∫_(−∞) ^(+∞) ((x sin(2x))/((1+4x^2 )^2 )) dx .

findthevalueof+xsin(2x)(1+4x2)2dx.

Question Number 33202    Answers: 0   Comments: 1

find the value of ∫_(−∞) ^(+∞) (dt/((1+t +t^2 )^2 )) .

findthevalueof+dt(1+t+t2)2.

Question Number 33175    Answers: 0   Comments: 1

find ∫_0 ^1 (dt/((1+t^2 )^2 ))

find01dt(1+t2)2

Question Number 33172    Answers: 0   Comments: 0

find ∫ (dx/(x +(√(x^2 −3x+2)))) .

finddxx+x23x+2.

Question Number 33170    Answers: 0   Comments: 1

prove that ∫_0 ^∞ ((∣sinx∣)/x) dx is divergent.

provethat0sinxxdxisdivergent.

Question Number 33169    Answers: 1   Comments: 1

find the value of ∫_0 ^π (dx/(1+2 sin^2 x)) .

findthevalueof0πdx1+2sin2x.

Question Number 33166    Answers: 0   Comments: 0

find the value of ∫_0 ^1 (dx/(1+x^4 )) .

findthevalueof01dx1+x4.

Question Number 33155    Answers: 0   Comments: 4

Evaluate ∫_(−∞) ^∞ 3x^2 (x^3 + 1)^2 e^(−x^6 − 2x^3 ) dx

Evaluate3x2(x3+1)2ex62x3dx

Question Number 33130    Answers: 0   Comments: 0

find the value of ∫_0 ^∞ ((1+x cosθ)/(x^2 +2x cosθ +1)) dx .

findthevalueof01+xcosθx2+2xcosθ+1dx.

Question Number 33129    Answers: 0   Comments: 2

1)find the value of u_n =∫_(−∞) ^(+∞) ((cos(nx))/(4 +x^2 )) dx 2) find the nature of Σ u_n .

1)findthevalueofun=+cos(nx)4+x2dx2)findthenatureofΣun.

Question Number 33128    Answers: 0   Comments: 2

find the value of ∫_0 ^∞ (dx/((1+x^2 )( 1+x^4 ))) .

findthevalueof0dx(1+x2)(1+x4).

Question Number 33120    Answers: 1   Comments: 0

let give α>0 find the value of ∫_0 ^1 (dx/(√((1−x)(1+αx)))) .

letgiveα>0findthevalueof01dx(1x)(1+αx).

Question Number 33119    Answers: 0   Comments: 1

find ∫_0 ^∞ (t^n /(e^t −1)) dt by using ξ(x) for n integr ξ(x)=Σ_(n=1) ^∞ (1/n^x ) with x>1 .

find0tnet1dtbyusingξ(x)fornintegrξ(x)=n=11nxwithx>1.

Question Number 33069    Answers: 0   Comments: 0

by using residus theorem prove that ∫_0 ^∞ (t^(a−1) /(1+t)) dt = (π/(sin(πa))) with 0<a<1 .

byusingresidustheoremprovethat0ta11+tdt=πsin(πa)with0<a<1.

Question Number 33028    Answers: 0   Comments: 0

find the value of∫_0 ^∞ (e^(−[t]) /(t+1))dt .

findthevalueof0e[t]t+1dt.

Question Number 33027    Answers: 1   Comments: 0

calculate ∫_0 ^∞ (x^3 /(1+x^5 ))dx.

calculate0x31+x5dx.

Question Number 33026    Answers: 1   Comments: 1

calculate ∫_0 ^∞ ((1+x^4 )/(1+x^6 )) dx .

calculate01+x41+x6dx.

Question Number 33009    Answers: 2   Comments: 1

help ! ! ! ∫ (dx/(csc(x)−1)) = ? [ my way ] ∫( (dx/((1/(sinx)) − 1)) ) =∫((sinx)/(1−sinx)) dx =−∫ ((sinx−1+1)/(sinx−1)) dx =−∫1+(1/(sinx−1)) dx =−(∫1dx+∫((sinx+1)/((sinx−1)(sinx+1))) dx) =−(x+C−∫((sinx+1)/(1−sin^2 x)) dx) =−(x+C−∫ ((sinx)/(cos^2 x)) dx−∫ (1/(cos^2 x)) dx) =−(x+C+∫(cosx)^(−2) dcosx−∫(1/(cos^2 x))dx) =−(x−(cosx)^(−1) +C−∫(1/(cos^2 x))dx) ...and I can′t solve the ∫(1/(cos^2 x))dx oh i just found that is tanx+C

help!!!dxcsc(x)1=?[myway](dx1sinx1)=sinx1sinxdx=sinx1+1sinx1dx=1+1sinx1dx=(1dx+sinx+1(sinx1)(sinx+1)dx)=(x+Csinx+11sin2xdx)=(x+Csinxcos2xdx1cos2xdx)=(x+C+(cosx)2dcosx1cos2xdx)=(x(cosx)1+C1cos2xdx)...andIcantsolvethe1cos2xdxohijustfoundthatistanx+C

Question Number 32994    Answers: 0   Comments: 1

find ∫_0 ^∞ ((1−cos(λx))/x^2 ) dx with λ>0 .

find01cos(λx)x2dxwithλ>0.

Question Number 32993    Answers: 0   Comments: 0

calculate ∫_0 ^∞ e^(−λx) ((sinx)/(√x)) dx wih λ>0 .

calculate0eλxsinxxdxwihλ>0.

  Pg 292      Pg 293      Pg 294      Pg 295      Pg 296      Pg 297      Pg 298      Pg 299      Pg 300      Pg 301   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com