Question and Answers Forum |
IntegrationQuestion and Answers: Page 297 |
if (1/(1+cosx)) = (a_0 /2) +Σ_(n≥1) a_n cos(nx) calculate a_0 and a_n |
let g(x)= (1/(1+x^4 )) 1) find g^((n)) (x) 2) calculate g^((n)) (0) 3) if g(x)=Σ u_n x^n find the sequence u_n |
let give n ≥3 integr calculate I_n = ∫_(−∞) ^(+∞) (dx/(1+x +x^2 +....+x^(n−1) )) |
let A_n =∫_(−∞) ^(+∞) (e^(iπx) /(1+x+x^2 +...x^(n−1) )) with n≥3 integr find the value of A_n . |
find lim_(x→+∞) x e^(−x^2 ) ∫^(x−1) _0 e^t^2 dt |
find the value of ∫_(−∞) ^(+∞) ((cos(ax))/(1+x+x^2 )) dx. |
find the value of ∫_(−∞) ^(+∞) ((x sin(2x))/((1+4x^2 )^2 )) dx . |
find the value of ∫_(−∞) ^(+∞) (dt/((1+t +t^2 )^2 )) . |
find ∫_0 ^1 (dt/((1+t^2 )^2 )) |
find ∫ (dx/(x +(√(x^2 −3x+2)))) . |
prove that ∫_0 ^∞ ((∣sinx∣)/x) dx is divergent. |
find the value of ∫_0 ^π (dx/(1+2 sin^2 x)) . |
find the value of ∫_0 ^1 (dx/(1+x^4 )) . |
Evaluate ∫_(−∞) ^∞ 3x^2 (x^3 + 1)^2 e^(−x^6 − 2x^3 ) dx |
find the value of ∫_0 ^∞ ((1+x cosθ)/(x^2 +2x cosθ +1)) dx . |
1)find the value of u_n =∫_(−∞) ^(+∞) ((cos(nx))/(4 +x^2 )) dx 2) find the nature of Σ u_n . |
find the value of ∫_0 ^∞ (dx/((1+x^2 )( 1+x^4 ))) . |
let give α>0 find the value of ∫_0 ^1 (dx/(√((1−x)(1+αx)))) . |
find ∫_0 ^∞ (t^n /(e^t −1)) dt by using ξ(x) for n integr ξ(x)=Σ_(n=1) ^∞ (1/n^x ) with x>1 . |
by using residus theorem prove that ∫_0 ^∞ (t^(a−1) /(1+t)) dt = (π/(sin(πa))) with 0<a<1 . |
find the value of∫_0 ^∞ (e^(−[t]) /(t+1))dt . |
calculate ∫_0 ^∞ (x^3 /(1+x^5 ))dx. |
calculate ∫_0 ^∞ ((1+x^4 )/(1+x^6 )) dx . |
help ! ! ! ∫ (dx/(csc(x)−1)) = ? [ my way ] ∫( (dx/((1/(sinx)) − 1)) ) =∫((sinx)/(1−sinx)) dx =−∫ ((sinx−1+1)/(sinx−1)) dx =−∫1+(1/(sinx−1)) dx =−(∫1dx+∫((sinx+1)/((sinx−1)(sinx+1))) dx) =−(x+C−∫((sinx+1)/(1−sin^2 x)) dx) =−(x+C−∫ ((sinx)/(cos^2 x)) dx−∫ (1/(cos^2 x)) dx) =−(x+C+∫(cosx)^(−2) dcosx−∫(1/(cos^2 x))dx) =−(x−(cosx)^(−1) +C−∫(1/(cos^2 x))dx) ...and I can′t solve the ∫(1/(cos^2 x))dx oh i just found that is tanx+C |
find ∫_0 ^∞ ((1−cos(λx))/x^2 ) dx with λ>0 . |
calculate ∫_0 ^∞ e^(−λx) ((sinx)/(√x)) dx wih λ>0 . |
Pg 292 Pg 293 Pg 294 Pg 295 Pg 296 Pg 297 Pg 298 Pg 299 Pg 300 Pg 301 |