Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 298

Question Number 33120    Answers: 1   Comments: 0

let give α>0 find the value of ∫_0 ^1 (dx/(√((1−x)(1+αx)))) .

letgiveα>0findthevalueof01dx(1x)(1+αx).

Question Number 33119    Answers: 0   Comments: 1

find ∫_0 ^∞ (t^n /(e^t −1)) dt by using ξ(x) for n integr ξ(x)=Σ_(n=1) ^∞ (1/n^x ) with x>1 .

find0tnet1dtbyusingξ(x)fornintegrξ(x)=n=11nxwithx>1.

Question Number 33069    Answers: 0   Comments: 0

by using residus theorem prove that ∫_0 ^∞ (t^(a−1) /(1+t)) dt = (π/(sin(πa))) with 0<a<1 .

byusingresidustheoremprovethat0ta11+tdt=πsin(πa)with0<a<1.

Question Number 33028    Answers: 0   Comments: 0

find the value of∫_0 ^∞ (e^(−[t]) /(t+1))dt .

findthevalueof0e[t]t+1dt.

Question Number 33027    Answers: 1   Comments: 0

calculate ∫_0 ^∞ (x^3 /(1+x^5 ))dx.

calculate0x31+x5dx.

Question Number 33026    Answers: 1   Comments: 1

calculate ∫_0 ^∞ ((1+x^4 )/(1+x^6 )) dx .

calculate01+x41+x6dx.

Question Number 33009    Answers: 2   Comments: 1

help ! ! ! ∫ (dx/(csc(x)−1)) = ? [ my way ] ∫( (dx/((1/(sinx)) − 1)) ) =∫((sinx)/(1−sinx)) dx =−∫ ((sinx−1+1)/(sinx−1)) dx =−∫1+(1/(sinx−1)) dx =−(∫1dx+∫((sinx+1)/((sinx−1)(sinx+1))) dx) =−(x+C−∫((sinx+1)/(1−sin^2 x)) dx) =−(x+C−∫ ((sinx)/(cos^2 x)) dx−∫ (1/(cos^2 x)) dx) =−(x+C+∫(cosx)^(−2) dcosx−∫(1/(cos^2 x))dx) =−(x−(cosx)^(−1) +C−∫(1/(cos^2 x))dx) ...and I can′t solve the ∫(1/(cos^2 x))dx oh i just found that is tanx+C

help!!!dxcsc(x)1=?[myway](dx1sinx1)=sinx1sinxdx=sinx1+1sinx1dx=1+1sinx1dx=(1dx+sinx+1(sinx1)(sinx+1)dx)=(x+Csinx+11sin2xdx)=(x+Csinxcos2xdx1cos2xdx)=(x+C+(cosx)2dcosx1cos2xdx)=(x(cosx)1+C1cos2xdx)...andIcantsolvethe1cos2xdxohijustfoundthatistanx+C

Question Number 32994    Answers: 0   Comments: 1

find ∫_0 ^∞ ((1−cos(λx))/x^2 ) dx with λ>0 .

find01cos(λx)x2dxwithλ>0.

Question Number 32993    Answers: 0   Comments: 0

calculate ∫_0 ^∞ e^(−λx) ((sinx)/(√x)) dx wih λ>0 .

calculate0eλxsinxxdxwihλ>0.

Question Number 33125    Answers: 0   Comments: 0

let give u_n = ∫_0 ^π ((cos(nx)dx)/(1−2λcosx +λ^2 )) 1) prove that λ u_(n+2) −(1+λ^2 )u_(n+1) +λ u_n =0 2) ptove that Σ u_n is convergent and find its sum

letgiveun=0πcos(nx)dx12λcosx+λ21)provethatλun+2(1+λ2)un+1+λun=02)ptovethatΣunisconvergentandfinditssum

Question Number 32958    Answers: 0   Comments: 1

Question Number 32951    Answers: 2   Comments: 1

Evaluate ∫((x^4 +1)/(x^6 +1))dx [W.B.H.S 2018]

Evaluatex4+1x6+1dx[W.B.H.S2018]

Question Number 32939    Answers: 1   Comments: 1

1) study the convergence of ∫_0 ^1 (x^p /(1+x)) dx 2) find lim_(p→∞) ∫_0 ^1 (x^p /(1+x))dx .

1)studytheconvergenceof01xp1+xdx2)findlimp01xp1+xdx.

Question Number 32928    Answers: 2   Comments: 2

plz help Evalute ∫_(π/3 ) ^(π/4) ((sin^2 x)/(√(1−cosx)))dx

plzhelpEvaluteπ/4π/3sin2x1cosxdx

Question Number 32789    Answers: 0   Comments: 0

∣∫_a ^b f(x)dx≤∣∫_a ^b ∣f(x)∣dx∣

baf(x)dx⩽∣baf(x)dx

Question Number 32785    Answers: 1   Comments: 0

∫((3x^2 +2x−4)/(7x^2 −9x+2))dx

3x2+2x47x29x+2dx

Question Number 32763    Answers: 1   Comments: 1

Question Number 32741    Answers: 0   Comments: 0

find ∫_0 ^1 ((ln(t^2 +2t cosx +1))/t)dt .

find01ln(t2+2tcosx+1)tdt.

Question Number 32740    Answers: 0   Comments: 2

find∫_0 ^∞ ((ln(x^2 +t^2 ))/(1+t^2 ))dt

find0ln(x2+t2)1+t2dt

Question Number 32739    Answers: 0   Comments: 1

let f(x)=∫_0 ^∞ (e^(−t) /(1+xt))dt calculate f^((n)) (0).

letf(x)=0et1+xtdtcalculatef(n)(0).

Question Number 32737    Answers: 1   Comments: 0

let give 0≤x≤1 calculate ∫_0 ^∞ ((arctan((x/t)))/(1+t^2 )) dt

letgive0x1calculate0arctan(xt)1+t2dt

Question Number 32736    Answers: 0   Comments: 0

let o≤x≤1 find ∫_0 ^x ((lnt)/(t^2 −1))dt

letox1find0xlntt21dt

Question Number 32733    Answers: 0   Comments: 0

prove that Σ_(n=0) ^∞ (1/((n!)^2 )) =(1/(2π)) ∫_0 ^(2π) e^(2cosx) dx .

provethatn=01(n!)2=12π02πe2cosxdx.

Question Number 32731    Answers: 0   Comments: 0

1) prove that ∫_0 ^1 ((arctant)/t)dt=−∫_0 ^1 ((lnt)/(1+t^2 ))dt 2) find ∫_0 ^1 ((arctant)/t)dt at form of serie

1)provethat01arctanttdt=01lnt1+t2dt2)find01arctanttdtatformofserie

Question Number 32729    Answers: 0   Comments: 0

find lim_(n→∞) ∫_0 ^n (cos((x/n)))^n^2 dx.

findlimn0n(cos(xn))n2dx.

Question Number 32724    Answers: 0   Comments: 0

let A_n = ∫_0 ^n (√(1+(1−(x/n))^n )) dt. find a rquivalent of A_n .

letAn=0n1+(1xn)ndt.findarquivalentofAn.

  Pg 293      Pg 294      Pg 295      Pg 296      Pg 297      Pg 298      Pg 299      Pg 300      Pg 301      Pg 302   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com