Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 300

Question Number 32720    Answers: 0   Comments: 0

find ∫_(−∞) ^(+∞) (dt/(1 +(t+2i)^2 )) .

find+dt1+(t+2i)2.

Question Number 32719    Answers: 0   Comments: 0

cslculate ∫_0 ^∞ (t −[t])e^(−3t) dt .

cslculate0(t[t])e3tdt.

Question Number 32718    Answers: 0   Comments: 0

find ∫_0 ^∞ arctan(2x) (e^(−tx) /x) dc with t>0 2) calculate ∫_0 ^∞ ((arctan(2x))/x) e^(−x) dx.

find0arctan(2x)etxxdcwitht>02)calculate0arctan(2x)xexdx.

Question Number 32717    Answers: 0   Comments: 0

finf ∫_0 ^(+∞) (dx/(1+x^2 +x^4 ))

finf0+dx1+x2+x4

Question Number 32716    Answers: 1   Comments: 0

find ∫_0 ^(2π) ((cos^2 x)/(1+3sin^2 x))dx .

find02πcos2x1+3sin2xdx.

Question Number 32715    Answers: 0   Comments: 1

calculate ∫_(−∞) ^(+∞) (dt/((1+it)(1+it^2 ))) .

calculate+dt(1+it)(1+it2).

Question Number 32714    Answers: 0   Comments: 1

calculate ∫_1 ^(+∞) (dt/(t^2 (√(1+t^2 )))) .

calculate1+dtt21+t2.

Question Number 32712    Answers: 0   Comments: 1

calculate ∫_0 ^(π/2) (dt/(1+a cos^2 t)) .

calculate0π2dt1+acos2t.

Question Number 32722    Answers: 0   Comments: 0

find ∫_0 ^∞ (dx/(1+x^3 )) .

find0dx1+x3.

Question Number 32705    Answers: 0   Comments: 1

let give f(x)= ∫_0 ^∞ ln(1 +(x/t^2 ))dt with ∣x∣<1 find a simple form of f(x).

letgivef(x)=0ln(1+xt2)dtwithx∣<1findasimpleformoff(x).

Question Number 32704    Answers: 0   Comments: 0

find ∫_0 ^∞ (((x+1)(√x))/(2+x^2 ))dx.

find0(x+1)x2+x2dx.

Question Number 32675    Answers: 1   Comments: 1

Question Number 32708    Answers: 0   Comments: 1

let give f(x)=∫_0 ^(π/2) ((ln(1+xtant))/(tant))dt find a simple form of f(x) 2)calculate ∫_0 ^(π/2) ((ln(1+2tant))/(tant))dt .

letgivef(x)=0π2ln(1+xtant)tantdtfindasimpleformoff(x)2)calculate0π2ln(1+2tant)tantdt.

Question Number 32627    Answers: 0   Comments: 1

plzz help ne differentiate between ∫sin(2x)= −(1/2)cox(2x)+c is not change to ∫2sin(x)cos(x) but ∫_b ^a sin(2x)= is change to ∫_b ^a 2sin(x)cos(x)

plzzhelpnedifferentiatebetweensin(2x)=12cox(2x)+cisnotchangeto2sin(x)cos(x)butabsin(2x)=ischangetoab2sin(x)cos(x)

Question Number 32484    Answers: 0   Comments: 2

∫_1 ^2 ∫_0 ^1 ((ln(x+y))/((x+y))) dx dy

1201ln(x+y)(x+y)dxdy

Question Number 32483    Answers: 0   Comments: 2

calculate ∫_0 ^(2π) (dx/(1+2cosx)) .

calculate02πdx1+2cosx.

Question Number 32482    Answers: 0   Comments: 0

find f(x)= ∫_0 ^π ((sin^2 t)/(1−2xcost +x^2 ))dt with ∣x∣<1 .

findf(x)=0πsin2t12xcost+x2dtwithx∣<1.

Question Number 32481    Answers: 0   Comments: 0

find ∫_0 ^∞ ((√(t )) −2(√(t+1)) +(√(t+2))) dt

find0(t2t+1+t+2)dt

Question Number 32480    Answers: 0   Comments: 1

find ∫_0 ^α (√(tanx)) dx with 0<α<(π/2) .

find0αtanxdxwith0<α<π2.

Question Number 32479    Answers: 0   Comments: 0

find ∫_0 ^∞ (dx/((x^2 +1)(x^2 +3x +1)))

find0dx(x2+1)(x2+3x+1)

Question Number 32478    Answers: 0   Comments: 1

find ∫_0 ^∞ ln(((1+t^2 )/t^2 ))dt

find0ln(1+t2t2)dt

Question Number 32477    Answers: 0   Comments: 1

calcilate ∫_0 ^1 ((ln(1−x^2 ))/x^2 )dx

calcilate01ln(1x2)x2dx

Question Number 32420    Answers: 0   Comments: 0

Question Number 32419    Answers: 0   Comments: 0

Question Number 32367    Answers: 0   Comments: 0

let α∈R and x^2 ≠1 find the value of f(x) = ∫_0 ^π ln(x^2 −2x cost +1)dt calculate f(x).

letαRandx21findthevalueoff(x)=0πln(x22xcost+1)dtcalculatef(x).

Question Number 32365    Answers: 0   Comments: 3

let F(x) = ∫_0 ^π ln(1+xcosθ)dθ .with ∣x∣<1 find F(x) .

letF(x)=0πln(1+xcosθ)dθ.withx∣<1findF(x).

  Pg 295      Pg 296      Pg 297      Pg 298      Pg 299      Pg 300      Pg 301      Pg 302      Pg 303      Pg 304   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com