Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 303

Question Number 32354    Answers: 0   Comments: 1

calculate ∫_0 ^(π/4) (dt/((1+sin^2 t)^2 )) .

calculate0π4dt(1+sin2t)2.

Question Number 32353    Answers: 1   Comments: 0

calculate ∫_0 ^(π/4) cos(x)ln(cos(x))dx .

calculate0π4cos(x)ln(cos(x))dx.

Question Number 32352    Answers: 1   Comments: 2

find the value of ∫_0 ^1 arctan((√(1−x^2 )))dx

findthevalueof01arctan(1x2)dx

Question Number 32351    Answers: 1   Comments: 0

calculate ∫_0 ^(π/2) (dt/(1+cosθ sint)) .

calculate0π2dt1+cosθsint.

Question Number 32350    Answers: 0   Comments: 0

calculate ∫_0 ^1 ^3 (√(x^2 (1−x))) dx

calculate013x2(1x)dx

Question Number 32349    Answers: 0   Comments: 1

find the value of ∫_0 ^π ((xdx)/(1+sinx)) .

findthevalueof0πxdx1+sinx.

Question Number 32343    Answers: 1   Comments: 1

calculate ∫_0 ^(2π) (dt/(x−e^(it) )) .

calculate02πdtxeit.

Question Number 32342    Answers: 0   Comments: 0

find the value of ∫∫_D ((dxdy)/((4x^2 +y^2 +1)^2 )) D={(x,y)∈ R^2 / x^2 +y^2 ≤1 and y ≤2x } .

findthevalueofDdxdy(4x2+y2+1)2D={(x,y)R2/x2+y21andy2x}.

Question Number 32341    Answers: 0   Comments: 1

let give λ from R and λ^2 ≠1 and I_n (λ) = ∫_0 ^π ((cos(nt))/(1−2λcost +λ^2 ))dt .calculate I_n (λ).

letgiveλfromRandλ21andIn(λ)=0πcos(nt)12λcost+λ2dt.calculateIn(λ).

Question Number 32340    Answers: 0   Comments: 0

find the value of ∫_0 ^∞ ((sin^3 t)/t^2 ) dt .

findthevalueof0sin3tt2dt.

Question Number 32339    Answers: 0   Comments: 1

calculate ∫_0 ^(+∞) ((th(3x) −th(2x))/x) dx .

calculate0+th(3x)th(2x)xdx.

Question Number 32338    Answers: 0   Comments: 0

find the value of ∫_0 ^1 ((ln(t))/((1+t)(√(1−t^2 )))) dt.

findthevalueof01ln(t)(1+t)1t2dt.

Question Number 32337    Answers: 0   Comments: 0

1)calculate ∫_a ^(+∞) (dx/((1+x^2 )(√(x^2 −a^2 )))) with a>0 2) find the value of ∫_2 ^(+∞) (dx/((1+x^2 )(√(x^2 −4)))) .

1)calculatea+dx(1+x2)x2a2witha>02)findthevalueof2+dx(1+x2)x24.

Question Number 32323    Answers: 1   Comments: 0

Given f(x) = (3/(16))(∫_0 ^1 f(x)dx)x^2 − (9/(10))(∫_0 ^2 f(x)dx)x + 2(∫_0 ^3 f(x)dx) + 4 Find f(x)

Givenf(x)=316(01f(x)dx)x2910(02f(x)dx)x+2(03f(x)dx)+4Findf(x)

Question Number 32304    Answers: 0   Comments: 0

find lim_(x→+∞) e^(−x^2 ) ∫_0 ^x e^t^2 dt .

findlimx+ex20xet2dt.

Question Number 32302    Answers: 1   Comments: 0

calculate ∫_1 ^2 (dx/(x +x(√x))) .

calculate12dxx+xx.

Question Number 32301    Answers: 0   Comments: 1

calculate ∫_1 ^e ln(1+(√x))dx .

calculate1eln(1+x)dx.

Question Number 32269    Answers: 1   Comments: 0

find ∫ (x^3 /(√(1+x^2 ))) dx

findx31+x2dx

Question Number 32258    Answers: 2   Comments: 0

find ∫ (1/(2−x^2 )) dx

find12x2dx

Question Number 32206    Answers: 0   Comments: 0

Find Σ_(k=1) ^∞ (∫_(k−1) ^k x^(−x) dx) .

Findk=1(kk1xxdx).

Question Number 32139    Answers: 0   Comments: 4

Find the ∫ ((x+1)/(x^2 +x+1))dx

Findthex+1x2+x+1dx

Question Number 32045    Answers: 0   Comments: 0

find lim_(n→∞) ∫_0 ^∞ e^(−t) sin^n t dt .

findlimn0etsinntdt.

Question Number 32044    Answers: 0   Comments: 1

fimd lim_(x→0) (1/x^3 ) ∫_0 ^x t^2 ln(1+sint) dt .

fimdlimx01x30xt2ln(1+sint)dt.

Question Number 32043    Answers: 0   Comments: 0

let f(x)= ∫_x ^x^2 (dt/(lnt)) with x>0 and x≠1 1) prove that ∀ x>1 ∫_x ^x^2 ((xdt)/(tlnt)) ≤f(x)≤ ∫_x ^x^2 ((x^2 dt)/(tlnt)) after find lim_(x→1) f(x) 2) calculate f^′ (x) .

letf(x)=xx2dtlntwithx>0andx11)provethatx>1xx2xdttlntf(x)xx2x2dttlntafterfindlimx1f(x)2)calculatef(x).

Question Number 32040    Answers: 0   Comments: 2

let give f(x) =∫_0 ^(π/2) (dt/(1+x tant)) 1) find a simple form of f(x) 2) calculate ∫_0 ^(π/2) ((tant)/((1+xtant)^2 ))dt 3)give the value of ∫_0 ^(π/2) ((tant)/((1+(√3) tant)^2 )) dt .

letgivef(x)=0π2dt1+xtant1)findasimpleformoff(x)2)calculate0π2tant(1+xtant)2dt3)givethevalueof0π2tant(1+3tant)2dt.

Question Number 32039    Answers: 0   Comments: 3

a>−1 calculate ∫_0 ^(π/2) (dt/(1+a tan^2 t)) . 2) find ∫_0 ^(π/2) ((tan^2 t)/((1+atan^2 t)^2 )) dt 3) find the value of ∫_0 ^(π/2) ((tan^2 t)/((1+2tan^2 t)^2 ))dt.

a>1calculate0π2dt1+atan2t.2)find0π2tan2t(1+atan2t)2dt3)findthevalueof0π2tan2t(1+2tan2t)2dt.

  Pg 298      Pg 299      Pg 300      Pg 301      Pg 302      Pg 303      Pg 304      Pg 305      Pg 306      Pg 307   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com