Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 304

Question Number 31073    Answers: 1   Comments: 1

find I= ∫_0 ^(π/2) ((1−sinθ)/(cosθ))dθ .

findI=0π21sinθcosθdθ.

Question Number 31072    Answers: 0   Comments: 0

find ∫_0 ^∞ (dx/(e^x (√(sh(2x))))) dx.

find0dxexsh(2x)dx.

Question Number 31071    Answers: 1   Comments: 3

find ∫_0 ^π (dx/(1+sin^2 x)) .

find0πdx1+sin2x.

Question Number 31070    Answers: 0   Comments: 1

calculate ∫_0 ^π (dx/(1+2cosx)) .

calculate0πdx1+2cosx.

Question Number 31069    Answers: 1   Comments: 1

clculate ∫_0 ^1 x(√(x^2 −2x+2)) dx

clculate01xx22x+2dx

Question Number 31068    Answers: 0   Comments: 0

find I_n =∫_(−(π/2)) ^(π/2) e^(−ax) cos^(2n) xdx .

findIn=π2π2eaxcos2nxdx.

Question Number 31067    Answers: 0   Comments: 0

find A_n =∫_0 ^∞ x^(2n) e^(−ax^2 ) dx.

findAn=0x2neax2dx.

Question Number 31066    Answers: 0   Comments: 0

find I_n =∫_0 ^(π/2) cos^(2n+1) xdx.

findIn=0π2cos2n+1xdx.

Question Number 31065    Answers: 0   Comments: 0

find ∫_0 ^π ((xsinx)/((1−acosx)^2 )) dx with ∣a∣<1.

find0πxsinx(1acosx)2dxwitha∣<1.

Question Number 31063    Answers: 0   Comments: 0

find f(t)= ∫_0 ^1 ln(1+tx^2 )dxfor t>−1

findf(t)=01ln(1+tx2)dxfort>1

Question Number 31062    Answers: 0   Comments: 0

find ∫_0 ^(π/2) e^x sinx cos^2 xdx.

find0π2exsinxcos2xdx.

Question Number 31061    Answers: 0   Comments: 0

find ∫_0 ^(π/2) (sinθ −cosθ)ln(sinθ+cosθ)dθ.

find0π2(sinθcosθ)ln(sinθ+cosθ)dθ.

Question Number 31060    Answers: 0   Comments: 0

calculate by recurrence ∫_0 ^∞ ((lnx)/((1+x)^n ))dx with n≥2 .

calculatebyrecurrence0lnx(1+x)ndxwithn2.

Question Number 31059    Answers: 0   Comments: 0

find ∫_0 ^(π/2) cos(2θ)ln(tanθ)dθ.

find0π2cos(2θ)ln(tanθ)dθ.

Question Number 31058    Answers: 0   Comments: 0

find ∫_0 ^∞ ((x arctanx)/((1+x^2 )^2 ))dx

find0xarctanx(1+x2)2dx

Question Number 31057    Answers: 0   Comments: 0

find ∫_0 ^1 (((√(1+x^2 )) −(√(1−x^2 )))/x^2 ) dx.

find011+x21x2x2dx.

Question Number 31056    Answers: 0   Comments: 1

find ∫_1 ^(+∞) (dx/(x^2 −2xcosα +1)) with 0<α<π .

find1+dxx22xcosα+1with0<α<π.

Question Number 31055    Answers: 0   Comments: 1

find ∫_(−∞) ^(+∞) (dx/((x^2 −x+1)(x^2 −2x+4))) .

find+dx(x2x+1)(x22x+4).

Question Number 31054    Answers: 0   Comments: 0

find ∫_0 ^1 (dx/(x^4 +1)) .

find01dxx4+1.

Question Number 31053    Answers: 0   Comments: 1

let λ ∈R and a>0 find ∫_0 ^∞ e^(−ax) cos(λx)dx .

letλRanda>0find0eaxcos(λx)dx.

Question Number 31052    Answers: 0   Comments: 0

let give 0<a<b find ∫_a ^b ((lnx)/x)dx .

letgive0<a<bfindablnxxdx.

Question Number 31051    Answers: 0   Comments: 0

study the convergence of ∫_0 ^∞ ((e^(−ax) −e^(−bx) )/(1− e^(−x) )) dx.

studytheconvergenceof0eaxebx1exdx.

Question Number 31049    Answers: 0   Comments: 0

study the convergence of ∫_0 ^∞ x^(−x) dx .

studytheconvergenceof0xxdx.

Question Number 31048    Answers: 0   Comments: 0

study the convergence of ∫_1 ^(+∞) (((π/2) −arctanx)/x)dx

studytheconvergenceof1+π2arctanxxdx

Question Number 31145    Answers: 1   Comments: 0

Given ∫_0 ^1 f(x) dx = (((2018)),(( 0)) ) + (1/2) (((2018)),(( 1)) ) + (1/3) (((2018)),(( 2)) ) + ... + (1/(2019)) (((2018)),((2018)) ) ∫_0 ^1 g(x) dx = (((2018)),(( 0)) ) − (1/2) (((2018)),(( 1)) ) + (1/3) (((2018)),(( 2)) ) − ... + (1/(2019)) (((2018)),((2018)) ) h(x) is an odd function Then what is the value of ∫_(−3) ^( 3) f(x).g(x).h(x) dx ?

Given01f(x)dx=(20180)+12(20181)+13(20182)+...+12019(20182018)01g(x)dx=(20180)12(20181)+13(20182)...+12019(20182018)h(x)isanoddfunctionThenwhatisthevalueof33f(x).g(x).h(x)dx?

Question Number 31141    Answers: 1   Comments: 0

using the limit defination find the area of f(x)= cos(x) [0,π/2]

usingthelimitdefinationfindtheareaoff(x)=cos(x)[0,π/2]

  Pg 299      Pg 300      Pg 301      Pg 302      Pg 303      Pg 304      Pg 305      Pg 306      Pg 307      Pg 308   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com