Question and Answers Forum |
IntegrationQuestion and Answers: Page 304 |
find I= ∫_0 ^(π/2) ((1−sinθ)/(cosθ))dθ . |
find ∫_0 ^∞ (dx/(e^x (√(sh(2x))))) dx. |
find ∫_0 ^π (dx/(1+sin^2 x)) . |
calculate ∫_0 ^π (dx/(1+2cosx)) . |
clculate ∫_0 ^1 x(√(x^2 −2x+2)) dx |
find I_n =∫_(−(π/2)) ^(π/2) e^(−ax) cos^(2n) xdx . |
find A_n =∫_0 ^∞ x^(2n) e^(−ax^2 ) dx. |
find I_n =∫_0 ^(π/2) cos^(2n+1) xdx. |
find ∫_0 ^π ((xsinx)/((1−acosx)^2 )) dx with ∣a∣<1. |
find f(t)= ∫_0 ^1 ln(1+tx^2 )dxfor t>−1 |
find ∫_0 ^(π/2) e^x sinx cos^2 xdx. |
find ∫_0 ^(π/2) (sinθ −cosθ)ln(sinθ+cosθ)dθ. |
calculate by recurrence ∫_0 ^∞ ((lnx)/((1+x)^n ))dx with n≥2 . |
find ∫_0 ^(π/2) cos(2θ)ln(tanθ)dθ. |
find ∫_0 ^∞ ((x arctanx)/((1+x^2 )^2 ))dx |
find ∫_0 ^1 (((√(1+x^2 )) −(√(1−x^2 )))/x^2 ) dx. |
find ∫_1 ^(+∞) (dx/(x^2 −2xcosα +1)) with 0<α<π . |
find ∫_(−∞) ^(+∞) (dx/((x^2 −x+1)(x^2 −2x+4))) . |
find ∫_0 ^1 (dx/(x^4 +1)) . |
let λ ∈R and a>0 find ∫_0 ^∞ e^(−ax) cos(λx)dx . |
let give 0<a<b find ∫_a ^b ((lnx)/x)dx . |
study the convergence of ∫_0 ^∞ ((e^(−ax) −e^(−bx) )/(1− e^(−x) )) dx. |
study the convergence of ∫_0 ^∞ x^(−x) dx . |
study the convergence of ∫_1 ^(+∞) (((π/2) −arctanx)/x)dx |
Given ∫_0 ^1 f(x) dx = (((2018)),(( 0)) ) + (1/2) (((2018)),(( 1)) ) + (1/3) (((2018)),(( 2)) ) + ... + (1/(2019)) (((2018)),((2018)) ) ∫_0 ^1 g(x) dx = (((2018)),(( 0)) ) − (1/2) (((2018)),(( 1)) ) + (1/3) (((2018)),(( 2)) ) − ... + (1/(2019)) (((2018)),((2018)) ) h(x) is an odd function Then what is the value of ∫_(−3) ^( 3) f(x).g(x).h(x) dx ? |
using the limit defination find the area of f(x)= cos(x) [0,π/2] |
Pg 299 Pg 300 Pg 301 Pg 302 Pg 303 Pg 304 Pg 305 Pg 306 Pg 307 Pg 308 |