Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 305

Question Number 31102    Answers: 0   Comments: 2

find ∫_0 ^(+∞) ((lnx)/(x^2 +a^2 ))dx 2) find the value of ∫_0 ^∞ ((lnx)/((x^2 +a^2 )^3 )) .

find0+lnxx2+a2dx2)findthevalueof0lnx(x2+a2)3.

Question Number 31101    Answers: 0   Comments: 0

let give f(x)= ∫_0 ^x t^2 e^(−2t^2 ) sin(2(x−t))dt calculate f^(′′) +4f then finf f(x).

letgivef(x)=0xt2e2t2sin(2(xt))dtcalculatef+4fthenfinff(x).

Question Number 31100    Answers: 0   Comments: 1

find ∫_0 ^∞ ((cosx −cos(3x))/x) e^(−2x) dx.

find0cosxcos(3x)xe2xdx.

Question Number 31098    Answers: 0   Comments: 2

find the value of ∫_1 ^∞ ((arctan(x+1) −arctanx)/x^2 )dx.

findthevalueof1arctan(x+1)arctanxx2dx.

Question Number 31097    Answers: 0   Comments: 1

calculate interms of a and b the integral ∫_0 ^∞ ((arctan(bt) −arctan(at))/t)dt with a and b>0.

calculateintermsofaandbtheintegral0arctan(bt)arctan(at)tdtwithaandb>0.

Question Number 31096    Answers: 0   Comments: 1

find ∫_0 ^π (dx/((a+bcosx)^2 )) with a>b>0 then give the value of ∫_0 ^π (dx/((2+cosx)^2 ))

find0πdx(a+bcosx)2witha>b>0thengivethevalueof0πdx(2+cosx)2

Question Number 31095    Answers: 0   Comments: 1

find I_n (x)= ∫_0 ^∞ t^n e^(−xt) dt x>0 n∈ N.

findIn(x)=0tnextdtx>0nN.

Question Number 31094    Answers: 0   Comments: 0

m and n integrs and y≥0 find ∫_0 ^y x^m (y−x)^n dx

mandnintegrsandy0find0yxm(yx)ndx

Question Number 31093    Answers: 0   Comments: 1

calculate ∫_0 ^∞ e^(−x^2 ) cos(2xy)dx.

calculate0ex2cos(2xy)dx.

Question Number 31092    Answers: 0   Comments: 1

find ∫_0 ^∞ ((ln(1+4x^2 ))/(1+2x^2 ))dx .

find0ln(1+4x2)1+2x2dx.

Question Number 31091    Answers: 0   Comments: 1

let −1<t<1 find f(t)= ∫_0 ^π ((ln(1+tcosx))/(cosx))dx

let1<t<1findf(t)=0πln(1+tcosx)cosxdx

Question Number 31090    Answers: 0   Comments: 1

find ∫∫_(1≤x^2 +y^2 ≤4 and y≥0) ((dxdy)/(√(x^2 +y^2 ))) .

find1x2+y24andy0dxdyx2+y2.

Question Number 31089    Answers: 0   Comments: 0

find ∫_0 ^1 dy ∫_y^2 ^y ((ydx)/(x(√(x^2 +y^2 )))) .

find01dyy2yydxxx2+y2.

Question Number 31088    Answers: 0   Comments: 0

find ∫_0 ^1 dx ∫_0 ^(1−x) e^((y−x)/(y+x)) dy.

find01dx01xeyxy+xdy.

Question Number 31087    Answers: 0   Comments: 0

find ∫∫∫_(x^2 +y^2 +z^2 <4) (x^2 +y^2 +z^2 )dxdydz.

findx2+y2+z2<4(x2+y2+z2)dxdydz.

Question Number 31086    Answers: 0   Comments: 0

find ∫∫_D (x^4 −y^4 )dxdy with D= {(x,y)∈R^2 / 1<x^2 −y^2 <2 ,1<xy<2 ,x>0,y>0}

findD(x4y4)dxdywithD={(x,y)R2/1<x2y2<2,1<xy<2,x>0,y>0}

Question Number 31084    Answers: 0   Comments: 1

find ∫∫_D ((dxdy)/((x+y)^4 )) with D={(x,y)∈R^2 /x≥1,y≥1,x+y≤4}

findDdxdy(x+y)4withD={(x,y)R2/x1,y1,x+y4}

Question Number 31083    Answers: 0   Comments: 1

calculate by two methods ∫_0 ^1 ∫_0 ^(π/2) ((dx dt)/(1+x^2 tan^2 t)) then find the value of ∫_0 ^(π/2) t cotant dt .

calculatebytwomethods010π2dxdt1+x2tan2tthenfindthevalueof0π2tcotantdt.

Question Number 31082    Answers: 0   Comments: 0

calculate by two methods ∫_0 ^∞ ∫_0 ^∞ ((dxdy)/((1+y)(1+x^2 y))) then find the value of ∫_0 ^∞ ((lnx)/(1−x^2 ))dx.

calculatebytwomethods00dxdy(1+y)(1+x2y)thenfindthevalueof0lnx1x2dx.

Question Number 31081    Answers: 0   Comments: 0

find ∫_0 ^∞ dx ∫_x ^(+∞) e^(−y^2 dy) .

find0dxx+ey2dy.

Question Number 31080    Answers: 0   Comments: 0

find ∫_0 ^∞ e^(−px) dx ∫_0 ^a ((cos(xt))/(√(a^2 −t^2 )))dt with a>0 ,p>0

find0epxdx0acos(xt)a2t2dtwitha>0,p>0

Question Number 31079    Answers: 0   Comments: 0

calculate ∫∫_(0≤x≤1 and 0≤y≤2) x^2 y e^(xy) dxdxy.

calculate0x1and0y2x2yexydxdxy.

Question Number 31078    Answers: 0   Comments: 0

find ∫∫_(0≤x≤3 and x≤y≤4x−x^2 ) (x^2 +2y)dxdy.

find0x3andxy4xx2(x2+2y)dxdy.

Question Number 31077    Answers: 0   Comments: 1

calculate ∫∫_(0<x<1and 0<y<x^2 ) (y/(√(x^2 +y^2 )))dxdy.

calculate0<x<1and0<y<x2yx2+y2dxdy.

Question Number 31076    Answers: 0   Comments: 1

find ∫_0 ^((√2)/2) (dx/((2x^2 +1)(√(1+x^2 )))) .

find022dx(2x2+1)1+x2.

Question Number 31075    Answers: 0   Comments: 0

find ∫_0 ^π ((sinθ)/(cos^2 θ +2 sin^2 θ)) dθ .

find0πsinθcos2θ+2sin2θdθ.

  Pg 300      Pg 301      Pg 302      Pg 303      Pg 304      Pg 305      Pg 306      Pg 307      Pg 308      Pg 309   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com