Question and Answers Forum |
IntegrationQuestion and Answers: Page 305 |
find ∫_0 ^(+∞) ((lnx)/(x^2 +a^2 ))dx 2) find the value of ∫_0 ^∞ ((lnx)/((x^2 +a^2 )^3 )) . |
let give f(x)= ∫_0 ^x t^2 e^(−2t^2 ) sin(2(x−t))dt calculate f^(′′) +4f then finf f(x). |
find ∫_0 ^∞ ((cosx −cos(3x))/x) e^(−2x) dx. |
find the value of ∫_1 ^∞ ((arctan(x+1) −arctanx)/x^2 )dx. |
calculate interms of a and b the integral ∫_0 ^∞ ((arctan(bt) −arctan(at))/t)dt with a and b>0. |
find ∫_0 ^π (dx/((a+bcosx)^2 )) with a>b>0 then give the value of ∫_0 ^π (dx/((2+cosx)^2 )) |
find I_n (x)= ∫_0 ^∞ t^n e^(−xt) dt x>0 n∈ N. |
m and n integrs and y≥0 find ∫_0 ^y x^m (y−x)^n dx |
calculate ∫_0 ^∞ e^(−x^2 ) cos(2xy)dx. |
find ∫_0 ^∞ ((ln(1+4x^2 ))/(1+2x^2 ))dx . |
let −1<t<1 find f(t)= ∫_0 ^π ((ln(1+tcosx))/(cosx))dx |
find ∫∫_(1≤x^2 +y^2 ≤4 and y≥0) ((dxdy)/(√(x^2 +y^2 ))) . |
find ∫_0 ^1 dy ∫_y^2 ^y ((ydx)/(x(√(x^2 +y^2 )))) . |
find ∫_0 ^1 dx ∫_0 ^(1−x) e^((y−x)/(y+x)) dy. |
find ∫∫∫_(x^2 +y^2 +z^2 <4) (x^2 +y^2 +z^2 )dxdydz. |
find ∫∫_D (x^4 −y^4 )dxdy with D= {(x,y)∈R^2 / 1<x^2 −y^2 <2 ,1<xy<2 ,x>0,y>0} |
find ∫∫_D ((dxdy)/((x+y)^4 )) with D={(x,y)∈R^2 /x≥1,y≥1,x+y≤4} |
calculate by two methods ∫_0 ^1 ∫_0 ^(π/2) ((dx dt)/(1+x^2 tan^2 t)) then find the value of ∫_0 ^(π/2) t cotant dt . |
calculate by two methods ∫_0 ^∞ ∫_0 ^∞ ((dxdy)/((1+y)(1+x^2 y))) then find the value of ∫_0 ^∞ ((lnx)/(1−x^2 ))dx. |
find ∫_0 ^∞ dx ∫_x ^(+∞) e^(−y^2 dy) . |
find ∫_0 ^∞ e^(−px) dx ∫_0 ^a ((cos(xt))/(√(a^2 −t^2 )))dt with a>0 ,p>0 |
calculate ∫∫_(0≤x≤1 and 0≤y≤2) x^2 y e^(xy) dxdxy. |
find ∫∫_(0≤x≤3 and x≤y≤4x−x^2 ) (x^2 +2y)dxdy. |
calculate ∫∫_(0<x<1and 0<y<x^2 ) (y/(√(x^2 +y^2 )))dxdy. |
find ∫_0 ^((√2)/2) (dx/((2x^2 +1)(√(1+x^2 )))) . |
find ∫_0 ^π ((sinθ)/(cos^2 θ +2 sin^2 θ)) dθ . |
Pg 300 Pg 301 Pg 302 Pg 303 Pg 304 Pg 305 Pg 306 Pg 307 Pg 308 Pg 309 |