Question and Answers Forum |
IntegrationQuestion and Answers: Page 306 |
find interms of n A_n = ∫_0 ^∞ ((ln(x))/((1+x^ )^n )) dx with n from N and n≥3 . |
find ∫_0 ^1 ((xdx)/((1+x^2 )(√(1−x^4 )))) . |
letα ∈]0,π[ calculate ∫_0 ^(π/2) (dx/(2(cosα +chx))) . |
find f(t)=∫_0 ^1 ln(1+tx^2 )dx with t>0 |
let a>0 calculate ∫_0 ^∞ (dx/((x^2 +a^2 )^2 )) 2) calculate ∫_(−∞) ^(+∞) (x^2 /((x^2 +a^2 )^2 ))dx. |
find the value of I= ∫_0 ^1 (dx/((x+1)^2 (√(x^2 +2x +2)))) . |
calculate A_n = ∫_0 ^1 ((1−(√x))/(1−^n (√x)))dx. |
find ∫_0 ^1 (x/(√(x^4 +x^2 +1)))dx |
find ∫_0 ^1 (dx/(√(x^2 +x+1))) . |
let I_n = ∫_0 ^(1/2) (1−2t)^n e^(−t) dt with n integr not 0 1) prove that ∀t∈[0,(1/2)] (1/(√e))(1−2t)^n ≤ (1−2t)^n e^(−t) ≤(1−2t)^n then find lim_(n→∞ ) I_n 2) prove that I_(n+1 ) =1−2(n+1)I_n 3) calculate I_1 ,I_2 , and I_3 . |
find ∫_0 ^∞ x^(2n+1) e^(−x^2 ) dx with n from N. |
find I_n = ∫_0 ^1 (lnx)^n dx with n fromN |
let give D= R_+ ^2 −{(0,0)} and α from R let C_1 ={(x,y)∈ D/0<x^2 +y^2 ≤1 } C_2 ={(x,y) ∈D / x^2 +y^2 ≥1} study the convergence of I= ∫∫_C_1 ((dxdy)/(((√(x^2 +y^2 )) )^α )) and J=∫∫_C_2 ((dxdy)/(((√(x^2 +y^2 )) )^α )) . |
∫(1/(x^2 +ln x))dx |
find ∫_0 ^π (dx/(1+cos(2x) +sin(2x))) . |
find F_n (x)= ∫_0 ^∞ (x^n /(e^(x+n) +1))dx . |
find I= ∫_(−∞) ^(+∞) (e^(−x^2 ) /(a^2 +(v−x)^2 ))dx. |
decompose inside C[x] F= (x^n /(x^m +1)) with m≥n+2 then find ∫_0 ^∞ (x^n /(x^m +1))dx. |
find ∫∫_D (x^2 +y^2 )dxdy with D={(x,y)/ x≤1 and x^2 ≤y≤2 }. |
find ∫∫_([1,e]^2 ) ln(xy)dxdy. |
find ∫∫_([0,1]×[0,1]) (x^2 /(1+y^2 ))dxdy. |
find I=∫∫_([3,4]×[1,2]) ((dxdy)/((x+y)^2 )) . |
find ∫∫_U ((dxdy)/(x^2 +y^2 )) with U= {(x,y)∈R^2 /1≤x^2 +2y^2 ≤4} |
find I= ∫∫_D (√(1−(x^2 /a^2 )−(y^2 /b^2 ))) dxdy with D is the interior of ellipce (x^2 /a^2 ) +(y^2 /b^2 ) =1. |
find ∫_(−1) ^1 (dx/((√(1+x^2 )) +(√(1−x^2 )))) . |
study the convergence of A(α) =∫_0 ^∞ (t^(α−1) /(1+t^2 ))dt and find its value. |
Pg 301 Pg 302 Pg 303 Pg 304 Pg 305 Pg 306 Pg 307 Pg 308 Pg 309 Pg 310 |