Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 306

Question Number 30777    Answers: 0   Comments: 0

find interms of n A_n = ∫_0 ^∞ ((ln(x))/((1+x^ )^n )) dx with n from N and n≥3 .

findintermsofnAn=0ln(x)(1+x)ndxwithnfromNandn3.

Question Number 30776    Answers: 1   Comments: 1

find ∫_0 ^1 ((xdx)/((1+x^2 )(√(1−x^4 )))) .

find01xdx(1+x2)1x4.

Question Number 30775    Answers: 1   Comments: 1

letα ∈]0,π[ calculate ∫_0 ^(π/2) (dx/(2(cosα +chx))) .

letα]0,π[calculate0π2dx2(cosα+chx).

Question Number 30774    Answers: 1   Comments: 1

find f(t)=∫_0 ^1 ln(1+tx^2 )dx with t>0

findf(t)=01ln(1+tx2)dxwitht>0

Question Number 30773    Answers: 0   Comments: 1

let a>0 calculate ∫_0 ^∞ (dx/((x^2 +a^2 )^2 )) 2) calculate ∫_(−∞) ^(+∞) (x^2 /((x^2 +a^2 )^2 ))dx.

leta>0calculate0dx(x2+a2)22)calculate+x2(x2+a2)2dx.

Question Number 30769    Answers: 0   Comments: 1

find the value of I= ∫_0 ^1 (dx/((x+1)^2 (√(x^2 +2x +2)))) .

findthevalueofI=01dx(x+1)2x2+2x+2.

Question Number 30767    Answers: 0   Comments: 1

calculate A_n = ∫_0 ^1 ((1−(√x))/(1−^n (√x)))dx.

calculateAn=011x1nxdx.

Question Number 30766    Answers: 0   Comments: 0

find ∫_0 ^1 (x/(√(x^4 +x^2 +1)))dx

find01xx4+x2+1dx

Question Number 30765    Answers: 0   Comments: 1

find ∫_0 ^1 (dx/(√(x^2 +x+1))) .

find01dxx2+x+1.

Question Number 30764    Answers: 0   Comments: 1

let I_n = ∫_0 ^(1/2) (1−2t)^n e^(−t) dt with n integr not 0 1) prove that ∀t∈[0,(1/2)] (1/(√e))(1−2t)^n ≤ (1−2t)^n e^(−t) ≤(1−2t)^n then find lim_(n→∞ ) I_n 2) prove that I_(n+1 ) =1−2(n+1)I_n 3) calculate I_1 ,I_2 , and I_3 .

letIn=012(12t)netdtwithnintegrnot01)provethatt[0,12]1e(12t)n(12t)net(12t)nthenfindlimnIn2)provethatIn+1=12(n+1)In3)calculateI1,I2,andI3.

Question Number 30761    Answers: 0   Comments: 1

find ∫_0 ^∞ x^(2n+1) e^(−x^2 ) dx with n from N.

find0x2n+1ex2dxwithnfromN.

Question Number 30760    Answers: 0   Comments: 1

find I_n = ∫_0 ^1 (lnx)^n dx with n fromN

findIn=01(lnx)ndxwithnfromN

Question Number 30741    Answers: 0   Comments: 0

let give D= R_+ ^2 −{(0,0)} and α from R let C_1 ={(x,y)∈ D/0<x^2 +y^2 ≤1 } C_2 ={(x,y) ∈D / x^2 +y^2 ≥1} study the convergence of I= ∫∫_C_1 ((dxdy)/(((√(x^2 +y^2 )) )^α )) and J=∫∫_C_2 ((dxdy)/(((√(x^2 +y^2 )) )^α )) .

letgiveD=R+2{(0,0)}andαfromRletC1={(x,y)D/0<x2+y21}C2={(x,y)D/x2+y21}studytheconvergenceofI=C1dxdy(x2+y2)αandJ=C2dxdy(x2+y2)α.

Question Number 30737    Answers: 0   Comments: 1

∫(1/(x^2 +ln x))dx

1x2+lnxdx

Question Number 30665    Answers: 0   Comments: 0

find ∫_0 ^π (dx/(1+cos(2x) +sin(2x))) .

find0πdx1+cos(2x)+sin(2x).

Question Number 30585    Answers: 0   Comments: 0

find F_n (x)= ∫_0 ^∞ (x^n /(e^(x+n) +1))dx .

findFn(x)=0xnex+n+1dx.

Question Number 30584    Answers: 0   Comments: 0

find I= ∫_(−∞) ^(+∞) (e^(−x^2 ) /(a^2 +(v−x)^2 ))dx.

findI=+ex2a2+(vx)2dx.

Question Number 30580    Answers: 0   Comments: 1

decompose inside C[x] F= (x^n /(x^m +1)) with m≥n+2 then find ∫_0 ^∞ (x^n /(x^m +1))dx.

decomposeinsideC[x]F=xnxm+1withmn+2thenfind0xnxm+1dx.

Question Number 30575    Answers: 0   Comments: 0

find ∫∫_D (x^2 +y^2 )dxdy with D={(x,y)/ x≤1 and x^2 ≤y≤2 }.

findD(x2+y2)dxdywithD={(x,y)/x1andx2y2}.

Question Number 30574    Answers: 0   Comments: 0

find ∫∫_([1,e]^2 ) ln(xy)dxdy.

find[1,e]2ln(xy)dxdy.

Question Number 30573    Answers: 0   Comments: 0

find ∫∫_([0,1]×[0,1]) (x^2 /(1+y^2 ))dxdy.

find[0,1]×[0,1]x21+y2dxdy.

Question Number 30572    Answers: 0   Comments: 1

find I=∫∫_([3,4]×[1,2]) ((dxdy)/((x+y)^2 )) .

findI=[3,4]×[1,2]dxdy(x+y)2.

Question Number 30570    Answers: 0   Comments: 0

find ∫∫_U ((dxdy)/(x^2 +y^2 )) with U= {(x,y)∈R^2 /1≤x^2 +2y^2 ≤4}

findUdxdyx2+y2withU={(x,y)R2/1x2+2y24}

Question Number 30569    Answers: 0   Comments: 0

find I= ∫∫_D (√(1−(x^2 /a^2 )−(y^2 /b^2 ))) dxdy with D is the interior of ellipce (x^2 /a^2 ) +(y^2 /b^2 ) =1.

findI=D1x2a2y2b2dxdywithDistheinteriorofellipcex2a2+y2b2=1.

Question Number 30568    Answers: 0   Comments: 0

find ∫_(−1) ^1 (dx/((√(1+x^2 )) +(√(1−x^2 )))) .

find11dx1+x2+1x2.

Question Number 30566    Answers: 0   Comments: 0

study the convergence of A(α) =∫_0 ^∞ (t^(α−1) /(1+t^2 ))dt and find its value.

studytheconvergenceofA(α)=0tα11+t2dtandfinditsvalue.

  Pg 301      Pg 302      Pg 303      Pg 304      Pg 305      Pg 306      Pg 307      Pg 308      Pg 309      Pg 310   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com