Question and Answers Forum |
IntegrationQuestion and Answers: Page 308 |
f function 2(×) derivable prove that L(f^′ )= pL(f) −f(o) and L(f^(′′) )=p^2 L(f)−pf(0)−f^′ (0) 2) let f(t)=tsin(wt) find L(f). |
find L(cos^2 x) and L(sin^2 x) L is laplace transform. |
let give f_n (x)= ∫_(1/n) ^n ((sin(xt))/t) e^(−t) dt 1)find lim_(n→∞) f_n (x) 2)find another form of f_n (x) by calculating f_n ^′ (x). |
prove that (1/e) ≤ ∫_0 ^1 e^(−(x−[x])^2 ) dx≤1. |
prove that ∫_0 ^∞ e^(−[x]^2 ) = Σ_(n≥0) e^(−n^2 ) . |
find I_n = ∫_0 ^1 (dx/((1+x^2 )^n )) with n integr. |
study the convergence of ∫_0 ^∞ ((sint)/t^α )dt . αfrom R. |
study the convergence of A(α)= ∫_0 ^∞ ((ln(t) arctant)/t^α )dt |
∫_(−∞) ^∞ (e^(ax) /(e^x +1))dx=? |
let I(x)= ∫_0 ^π (dt/(x^2 +cos^2 t)) 1) prove that I(x)= 2∫_0 ^(π/2) (dt/(x^2 +cos^2 t)) 2) find the value of I(x). |
let give J(x)= (1/π) ∫_0 ^π cos(xcost)dt 1) find J^′ and J^(′′) in form of integrals 2)prove that J^′ (x)=((−x)/π) ∫_0 ^π sin^2 t cos(xcost)dt and J is solution of d.e. xy^(′′) +y^′ +xy=0 |
let I= ∫_0 ^(π/2) ((sinx)/(√(1+sinxcosx)))dx and J= ∫_0 ^(π/2) ((cosx)/(√(1+sinx cosx))) dx 1) calculate I +J 2) find I and J. |
find ∫_(1/2) ^2 (1+(1/x^2 ))arctanx dx . (arctan=tan^(−1) ). |
find ∫_2 ^3 ((√(x+1))/(x(√(1−x))))dx . |
find ∫ (dx/(1+x^3 +x^6 )) . |
find ∫_0 ^(π/2) ((x sinx cosx)/(tan^2 x +cotan^2 x))dx .(use the ch.x=(π/2) −t). |
find ∫ (dt/(1+cost +sint)) . |
calculate ∫_0 ^(π/2) (dx/(1+cosx cosθ)) with −π<θ<π . |
integrate w.r.t x ∫(e^x^2 )dx |
prove that γ= Σ_(n=1) ^∞ ((1/n) −ln(1 +(1/n))) 2)show that γ= Σ_(k=2) ^∞ (((−1)^k )/k) ξ(k). |
prove that ln(Γ(x))= −lnx −γx +Σ_(n=1) ^∞ ( (x/n) −ln( 1+(x/n))) with x>0 |
let give 0<α<1 1) prove that π coth(πα) −(1/α) = Σ_(n=1) ^∞ ((2α)/(α^2 +n^2 )). 2)by integration on[0,1] find Π_(n=1) ^∞ (1+(1/n^2 )). |
let give ∣x∣<1 find ∫_0 ^(π/2) (dθ/(√(1−x^2 cos^2 θ))) . |
find J(x)= ∫_0 ^∞ (dt/(x+e^t )) ?. |
∫3xdx |
find ∫_0 ^(+∞) ((ln(x))/((1+x)^3 ))dx . |
Pg 303 Pg 304 Pg 305 Pg 306 Pg 307 Pg 308 Pg 309 Pg 310 Pg 311 Pg 312 |