Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 308

Question Number 30477    Answers: 0   Comments: 0

f function 2(×) derivable prove that L(f^′ )= pL(f) −f(o) and L(f^(′′) )=p^2 L(f)−pf(0)−f^′ (0) 2) let f(t)=tsin(wt) find L(f).

ffunction2(×)derivableprovethatL(f)=pL(f)f(o)andL(f)=p2L(f)pf(0)f(0)2)letf(t)=tsin(wt)findL(f).

Question Number 30476    Answers: 1   Comments: 0

find L(cos^2 x) and L(sin^2 x) L is laplace transform.

findL(cos2x)andL(sin2x)Lislaplacetransform.

Question Number 30475    Answers: 0   Comments: 0

let give f_n (x)= ∫_(1/n) ^n ((sin(xt))/t) e^(−t) dt 1)find lim_(n→∞) f_n (x) 2)find another form of f_n (x) by calculating f_n ^′ (x).

letgivefn(x)=1nnsin(xt)tetdt1)findlimnfn(x)2)findanotherformoffn(x)bycalculatingfn(x).

Question Number 30442    Answers: 3   Comments: 2

prove that (1/e) ≤ ∫_0 ^1 e^(−(x−[x])^2 ) dx≤1.

provethat1e01e(x[x])2dx1.

Question Number 30441    Answers: 1   Comments: 0

prove that ∫_0 ^∞ e^(−[x]^2 ) = Σ_(n≥0) e^(−n^2 ) .

provethat0e[x]2=n0en2.

Question Number 30426    Answers: 0   Comments: 0

find I_n = ∫_0 ^1 (dx/((1+x^2 )^n )) with n integr.

findIn=01dx(1+x2)nwithnintegr.

Question Number 30423    Answers: 0   Comments: 0

study the convergence of ∫_0 ^∞ ((sint)/t^α )dt . αfrom R.

studytheconvergenceof0sinttαdt.αfromR.

Question Number 30413    Answers: 0   Comments: 0

study the convergence of A(α)= ∫_0 ^∞ ((ln(t) arctant)/t^α )dt

studytheconvergenceofA(α)=0ln(t)arctanttαdt

Question Number 30321    Answers: 0   Comments: 3

∫_(−∞) ^∞ (e^(ax) /(e^x +1))dx=?

eaxex+1dx=?

Question Number 30216    Answers: 0   Comments: 0

let I(x)= ∫_0 ^π (dt/(x^2 +cos^2 t)) 1) prove that I(x)= 2∫_0 ^(π/2) (dt/(x^2 +cos^2 t)) 2) find the value of I(x).

letI(x)=0πdtx2+cos2t1)provethatI(x)=20π2dtx2+cos2t2)findthevalueofI(x).

Question Number 30215    Answers: 0   Comments: 0

let give J(x)= (1/π) ∫_0 ^π cos(xcost)dt 1) find J^′ and J^(′′) in form of integrals 2)prove that J^′ (x)=((−x)/π) ∫_0 ^π sin^2 t cos(xcost)dt and J is solution of d.e. xy^(′′) +y^′ +xy=0

letgiveJ(x)=1π0πcos(xcost)dt1)findJandJinformofintegrals2)provethatJ(x)=xπ0πsin2tcos(xcost)dtandJissolutionofd.e.xy+y+xy=0

Question Number 30185    Answers: 0   Comments: 0

let I= ∫_0 ^(π/2) ((sinx)/(√(1+sinxcosx)))dx and J= ∫_0 ^(π/2) ((cosx)/(√(1+sinx cosx))) dx 1) calculate I +J 2) find I and J.

letI=0π2sinx1+sinxcosxdxandJ=0π2cosx1+sinxcosxdx1)calculateI+J2)findIandJ.

Question Number 30184    Answers: 0   Comments: 1

find ∫_(1/2) ^2 (1+(1/x^2 ))arctanx dx . (arctan=tan^(−1) ).

find122(1+1x2)arctanxdx.(arctan=tan1).

Question Number 30182    Answers: 0   Comments: 2

find ∫_2 ^3 ((√(x+1))/(x(√(1−x))))dx .

find23x+1x1xdx.

Question Number 30181    Answers: 0   Comments: 0

find ∫ (dx/(1+x^3 +x^6 )) .

finddx1+x3+x6.

Question Number 30180    Answers: 0   Comments: 1

find ∫_0 ^(π/2) ((x sinx cosx)/(tan^2 x +cotan^2 x))dx .(use the ch.x=(π/2) −t).

find0π2xsinxcosxtan2x+cotan2xdx.(usethech.x=π2t).

Question Number 30179    Answers: 0   Comments: 1

find ∫ (dt/(1+cost +sint)) .

finddt1+cost+sint.

Question Number 30178    Answers: 0   Comments: 1

calculate ∫_0 ^(π/2) (dx/(1+cosx cosθ)) with −π<θ<π .

calculate0π2dx1+cosxcosθwithπ<θ<π.

Question Number 30008    Answers: 0   Comments: 1

integrate w.r.t x ∫(e^x^2 )dx

integratew.r.tx(ex2)dx

Question Number 29980    Answers: 0   Comments: 0

prove that γ= Σ_(n=1) ^∞ ((1/n) −ln(1 +(1/n))) 2)show that γ= Σ_(k=2) ^∞ (((−1)^k )/k) ξ(k).

provethatγ=n=1(1nln(1+1n))2)showthatγ=k=2(1)kkξ(k).

Question Number 29976    Answers: 0   Comments: 0

prove that ln(Γ(x))= −lnx −γx +Σ_(n=1) ^∞ ( (x/n) −ln( 1+(x/n))) with x>0

provethatln(Γ(x))=lnxγx+n=1(xnln(1+xn))withx>0

Question Number 29975    Answers: 0   Comments: 2

let give 0<α<1 1) prove that π coth(πα) −(1/α) = Σ_(n=1) ^∞ ((2α)/(α^2 +n^2 )). 2)by integration on[0,1] find Π_(n=1) ^∞ (1+(1/n^2 )).

letgive0<α<11)provethatπcoth(πα)1α=n=12αα2+n2.2)byintegrationon[0,1]findn=1(1+1n2).

Question Number 29972    Answers: 0   Comments: 1

let give ∣x∣<1 find ∫_0 ^(π/2) (dθ/(√(1−x^2 cos^2 θ))) .

letgivex∣<1find0π2dθ1x2cos2θ.

Question Number 29971    Answers: 0   Comments: 2

find J(x)= ∫_0 ^∞ (dt/(x+e^t )) ?.

findJ(x)=0dtx+et?.

Question Number 29957    Answers: 1   Comments: 0

∫3xdx

3xdx

Question Number 29857    Answers: 0   Comments: 0

find ∫_0 ^(+∞) ((ln(x))/((1+x)^3 ))dx .

find0+ln(x)(1+x)3dx.

  Pg 303      Pg 304      Pg 305      Pg 306      Pg 307      Pg 308      Pg 309      Pg 310      Pg 311      Pg 312   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com