Question and Answers Forum |
IntegrationQuestion and Answers: Page 309 |
find ∫_0 ^π (dx/(2+cosx)) . |
Please can it be proven by another means that ∫tan^2 xdx=tanx+x +c |
![]() |
∫(2x^3 −3x^2 +3x−1)^(1/5) dx and limit is from 0 to 1 |
Find area between by y=1 and y=((1−x^2 )/(1+x^2 )) . |
find find I= ∫_1 ^3 ((∣x−2∣)/((x^2 −4x)^2 ))dx . |
Show that: ∫_(−1) ^( 1) (dx/(5 cosh(x) + 13 sinh(x))) = (1/2) log_e (((15e − 10)/(3e + 2))) |
let give w(x)= ∫_0 ^1 ((arcsin(x(1+t^2 )))/(1+t^2 ))dt find w(x). |
let give h(x)= ∫_0 ^1 ((arctan(xt))/(1+t^2 )) find h(x) . |
let give g(x)=∫_0 ^∞ ((arctan(x(1+t^2 )))/(1+t^2 ))dt find a simple form of g^′ (x) without integral. |
let give f(x)= ∫_0 ^1 ((arctan(x(1+t^2 )))/(1+t^2 ))dt find asimple form of f(x) without integral. |
∫tan^− (1−sinx/1+sinx) dx |
find ∫_(−∞) ^(+∞) ((cos(at))/(1+t^4 ))dt. |
for t>0 and f(t)= (4πt)^(−(n/2)) e^(−(x^2 /(4t))) prove that ∫_R f_t (x)dx=1 ∀t>0. |
find ∫∫_D e^(−y) sin(2xy)dxdy with D=[0,1]×[0,+∞[ then find the value of ∫_0 ^∞ ((sin^2 t)/t) e^(−t) dt . |
∫ (√(Σ_(n = 0) ^∞ [(−1)^n tan^(2n) (2x)])) dx |
find ∫_0 ^∞ (dx/(1+x^3 )) . |
let give 0<p<1 calculate K(p)= ∫_(−∞) ^(+∞) (e^(pt) /(1+e^t ))dt. |
find the value of ∫_0 ^∞ ((cos(ξt))/(1+t^4 ))dt. |
prove thst ∫_R (e^(iξx) /(1+x^2 ))dx= π e^(−∣ξ∣) . |
prove that ∫_0 ^∞ (e^(−t) /(√t))dt= e^(i(π/4)) ∫_0 ^∞ (e^(−ix) /(√x))dx. |
find ∫_γ (e^z /(z(z+1)))dz with γ={z∈C/ ∣z−1∣=2} |
find ∫_(−∞) ^(+∞) (dx/((1+x^2 )( 2+e^(ix) ))) . |
find ∫_(−∞) ^(+∞) (x^2 /((x^2 +1)^2 (x^2 +2x+2)))dx. |
find ∫_0 ^(2π) ((cos(2t))/(3−cost)) dt. |
find A_n = ∫_(−∞) ^(+∞) (dx/((1+x^2 )^n )) with n from N and n≥1. |
Pg 304 Pg 305 Pg 306 Pg 307 Pg 308 Pg 309 Pg 310 Pg 311 Pg 312 Pg 313 |