Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 309

Question Number 29439    Answers: 1   Comments: 0

find ∫_0 ^π (dx/(2+cosx)) .

find0πdx2+cosx.

Question Number 29384    Answers: 0   Comments: 3

Please can it be proven by another means that ∫tan^2 xdx=tanx+x +c

Pleasecanitbeprovenbyanothermeansthattan2xdx=tanx+x+c

Question Number 29423    Answers: 0   Comments: 1

Question Number 29311    Answers: 0   Comments: 0

∫(2x^3 −3x^2 +3x−1)^(1/5) dx and limit is from 0 to 1

(2x33x2+3x1)15dxandlimitisfrom0to1

Question Number 29202    Answers: 1   Comments: 0

Find area between by y=1 and y=((1−x^2 )/(1+x^2 )) .

Findareabetweenbyy=1andy=1x21+x2.

Question Number 29162    Answers: 0   Comments: 1

find find I= ∫_1 ^3 ((∣x−2∣)/((x^2 −4x)^2 ))dx .

findfindI=13x2(x24x)2dx.

Question Number 29105    Answers: 0   Comments: 2

Show that: ∫_(−1) ^( 1) (dx/(5 cosh(x) + 13 sinh(x))) = (1/2) log_e (((15e − 10)/(3e + 2)))

Showthat:11dx5cosh(x)+13sinh(x)=12loge(15e103e+2)

Question Number 29079    Answers: 0   Comments: 0

let give w(x)= ∫_0 ^1 ((arcsin(x(1+t^2 )))/(1+t^2 ))dt find w(x).

letgivew(x)=01arcsin(x(1+t2))1+t2dtfindw(x).

Question Number 29078    Answers: 0   Comments: 2

let give h(x)= ∫_0 ^1 ((arctan(xt))/(1+t^2 )) find h(x) .

letgiveh(x)=01arctan(xt)1+t2findh(x).

Question Number 29077    Answers: 0   Comments: 1

let give g(x)=∫_0 ^∞ ((arctan(x(1+t^2 )))/(1+t^2 ))dt find a simple form of g^′ (x) without integral.

letgiveg(x)=0arctan(x(1+t2))1+t2dtfindasimpleformofg(x)withoutintegral.

Question Number 29076    Answers: 0   Comments: 1

let give f(x)= ∫_0 ^1 ((arctan(x(1+t^2 )))/(1+t^2 ))dt find asimple form of f(x) without integral.

letgivef(x)=01arctan(x(1+t2))1+t2dtfindasimpleformoff(x)withoutintegral.

Question Number 29043    Answers: 0   Comments: 1

∫tan^− (1−sinx/1+sinx) dx

tan(1sinx/1+sinx)dx

Question Number 29038    Answers: 0   Comments: 1

find ∫_(−∞) ^(+∞) ((cos(at))/(1+t^4 ))dt.

find+cos(at)1+t4dt.

Question Number 29028    Answers: 0   Comments: 0

for t>0 and f(t)= (4πt)^(−(n/2)) e^(−(x^2 /(4t))) prove that ∫_R f_t (x)dx=1 ∀t>0.

fort>0andf(t)=(4πt)n2ex24tprovethatRft(x)dx=1t>0.

Question Number 29027    Answers: 0   Comments: 0

find ∫∫_D e^(−y) sin(2xy)dxdy with D=[0,1]×[0,+∞[ then find the value of ∫_0 ^∞ ((sin^2 t)/t) e^(−t) dt .

findDeysin(2xy)dxdywithD=[0,1]×[0,+[thenfindthevalueof0sin2ttetdt.

Question Number 29018    Answers: 0   Comments: 0

∫ (√(Σ_(n = 0) ^∞ [(−1)^n tan^(2n) (2x)])) dx

n=0[(1)ntan2n(2x)]dx

Question Number 29003    Answers: 1   Comments: 1

find ∫_0 ^∞ (dx/(1+x^3 )) .

find0dx1+x3.

Question Number 29002    Answers: 0   Comments: 0

let give 0<p<1 calculate K(p)= ∫_(−∞) ^(+∞) (e^(pt) /(1+e^t ))dt.

letgive0<p<1calculateK(p)=+ept1+etdt.

Question Number 29001    Answers: 0   Comments: 0

find the value of ∫_0 ^∞ ((cos(ξt))/(1+t^4 ))dt.

findthevalueof0cos(ξt)1+t4dt.

Question Number 29000    Answers: 0   Comments: 1

prove thst ∫_R (e^(iξx) /(1+x^2 ))dx= π e^(−∣ξ∣) .

provethstReiξx1+x2dx=πeξ.

Question Number 28999    Answers: 0   Comments: 1

prove that ∫_0 ^∞ (e^(−t) /(√t))dt= e^(i(π/4)) ∫_0 ^∞ (e^(−ix) /(√x))dx.

provethat0ettdt=eiπ40eixxdx.

Question Number 28998    Answers: 0   Comments: 0

find ∫_γ (e^z /(z(z+1)))dz with γ={z∈C/ ∣z−1∣=2}

findγezz(z+1)dzwithγ={zC/z1∣=2}

Question Number 28997    Answers: 0   Comments: 1

find ∫_(−∞) ^(+∞) (dx/((1+x^2 )( 2+e^(ix) ))) .

find+dx(1+x2)(2+eix).

Question Number 28996    Answers: 0   Comments: 0

find ∫_(−∞) ^(+∞) (x^2 /((x^2 +1)^2 (x^2 +2x+2)))dx.

find+x2(x2+1)2(x2+2x+2)dx.

Question Number 28995    Answers: 0   Comments: 0

find ∫_0 ^(2π) ((cos(2t))/(3−cost)) dt.

find02πcos(2t)3costdt.

Question Number 28994    Answers: 0   Comments: 0

find A_n = ∫_(−∞) ^(+∞) (dx/((1+x^2 )^n )) with n from N and n≥1.

findAn=+dx(1+x2)nwithnfromNandn1.

  Pg 304      Pg 305      Pg 306      Pg 307      Pg 308      Pg 309      Pg 310      Pg 311      Pg 312      Pg 313   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com