Question and Answers Forum |
IntegrationQuestion and Answers: Page 311 |
find the value of∫_(−∞) ^(+∞) ((x^2 −1)/(x^2 +1)) ((sinx)/x)dx. |
find ∫_(−∞) ^(+∞) ((cosx)/(e^x +e^(−x) ))dx. |
find the value of∫_0 ^∞ (x^3 /(1+x^7 ))dx. |
1) prove that ∀ x≥0 x −(x^2 /2)≤ln(1+x)≤x 2) find lim_(n→+∞) Π_(k=1) ^n (1 + (1/(k^2 +n^2 )))^n . |
find I = ∫_0 ^(2π) ln(x−e^(iθ) )dθ and xfromR and x^2 ≠1. |
find I_n = ∫_0 ^π (dx/(1+cos^2 (nx))) with n∈ N^★ . |
find ∫ arcsin((√(x/(x+2))))dx. |
find ∫ (x/(cos^2 x))dx. |
find ∫_(−1) ^1 (dt/(t +(√(1+t^2 )))) . |
find ∫_0 ^(π/2) cost ln(tant)dt. |
find ∫_0 ^∞ (dt/((1+t^2 )^4 )) |
find ∫_(−π) ^π ((2dt)/(2+sint +cost)) . |
find ∫_(−∞) ^(+∞) (dt/(t^2 +2t+2)) |
find the value of Σ_(n=1) ^(+∞) ((cos(nπx))/n^2 ) with 0<x<1. |
let give ϕ(x) =x ,ϕ 2π periodique even developp f at fourier series then find the value of Σ_(n=1) ^∞ (((−1)^n )/n^2 ) and Σ_(n=0) ^∞ (1/((2n+1)^2 )) . |
find the value of A_n = ∫_1 ^(+∞) (dt/(t^(n+1) (√(t−1)))) .withn∈N . |
let give f(x)= ch(αx) and 2π periodic with α≠0 developp f at fourier series. |
find f(x)=∫_0 ^1 ln(1+xt^2 )dt with ∣x∣<1 . |
let give F(x)=∫_0 ^∞ ((arctan(1+x(1+t^2 )))/(1+t^2 ))dt and x>0 calculate (dF/dx)(x). |
let give f(x)= e^(−x) cosx and 2π periodic 1) developp f at fourier series 2) find the value of Σ_(n=−∞) ^(n=+∞) (((−1)^n )/(1+n^2 )) . |
by using residus theorem find the value of A_n = ∫_0 ^∞ (dx/(1+x^n )) with n integr and n≥2. |
find I = ∫_(−∞) ^(+∞) (((x−1)cosx)/(x^2 −2x+2))dx and J= ∫_(−∞) ^(+∞) (((x−1)sinx)/(x^2 −2x +2)) dx. |
find the value of ∫_0 ^1 ((ln(1−(t^2 /4)))/t^2 )dt. |
let give f(x)= ∫_0 ^1 ((ln(1−x^2 t^2 ))/t^2 )dt with ∣x∣<1 by using derivation under ∫ find the value of f(x). |
let give f(x)=e^(iαx) 2π prriodic and α ∈R−Z developp f at fourier series. |
find the value of I= ∫_0 ^π (dθ/(1+cos^4 θ)) . |
Pg 306 Pg 307 Pg 308 Pg 309 Pg 310 Pg 311 Pg 312 Pg 313 Pg 314 Pg 315 |