Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 311

Question Number 28983    Answers: 0   Comments: 0

find the value of∫_(−∞) ^(+∞) ((x^2 −1)/(x^2 +1)) ((sinx)/x)dx.

findthevalueof+x21x2+1sinxxdx.

Question Number 28976    Answers: 0   Comments: 0

find ∫_(−∞) ^(+∞) ((cosx)/(e^x +e^(−x) ))dx.

find+cosxex+exdx.

Question Number 28975    Answers: 0   Comments: 0

find the value of∫_0 ^∞ (x^3 /(1+x^7 ))dx.

findthevalueof0x31+x7dx.

Question Number 28890    Answers: 0   Comments: 0

1) prove that ∀ x≥0 x −(x^2 /2)≤ln(1+x)≤x 2) find lim_(n→+∞) Π_(k=1) ^n (1 + (1/(k^2 +n^2 )))^n .

1)provethatx0xx22ln(1+x)x2)findlimn+k=1n(1+1k2+n2)n.

Question Number 28889    Answers: 0   Comments: 3

find I = ∫_0 ^(2π) ln(x−e^(iθ) )dθ and xfromR and x^2 ≠1.

findI=02πln(xeiθ)dθandxfromRandx21.

Question Number 28888    Answers: 0   Comments: 0

find I_n = ∫_0 ^π (dx/(1+cos^2 (nx))) with n∈ N^★ .

findIn=0πdx1+cos2(nx)withnN.

Question Number 28887    Answers: 0   Comments: 2

find ∫ arcsin((√(x/(x+2))))dx.

findarcsin(xx+2)dx.

Question Number 28886    Answers: 1   Comments: 0

find ∫ (x/(cos^2 x))dx.

findxcos2xdx.

Question Number 28885    Answers: 0   Comments: 1

find ∫_(−1) ^1 (dt/(t +(√(1+t^2 )))) .

find11dtt+1+t2.

Question Number 28884    Answers: 0   Comments: 0

find ∫_0 ^(π/2) cost ln(tant)dt.

find0π2costln(tant)dt.

Question Number 28883    Answers: 0   Comments: 1

find ∫_0 ^∞ (dt/((1+t^2 )^4 ))

find0dt(1+t2)4

Question Number 28882    Answers: 0   Comments: 2

find ∫_(−π) ^π ((2dt)/(2+sint +cost)) .

findππ2dt2+sint+cost.

Question Number 28881    Answers: 1   Comments: 0

find ∫_(−∞) ^(+∞) (dt/(t^2 +2t+2))

find+dtt2+2t+2

Question Number 28879    Answers: 0   Comments: 0

find the value of Σ_(n=1) ^(+∞) ((cos(nπx))/n^2 ) with 0<x<1.

findthevalueofn=1+cos(nπx)n2with0<x<1.

Question Number 28833    Answers: 0   Comments: 0

let give ϕ(x) =x ,ϕ 2π periodique even developp f at fourier series then find the value of Σ_(n=1) ^∞ (((−1)^n )/n^2 ) and Σ_(n=0) ^∞ (1/((2n+1)^2 )) .

letgiveφ(x)=x,φ2πperiodiqueevendeveloppfatfourierseriesthenfindthevalueofn=1(1)nn2andn=01(2n+1)2.

Question Number 28832    Answers: 0   Comments: 0

find the value of A_n = ∫_1 ^(+∞) (dt/(t^(n+1) (√(t−1)))) .withn∈N .

findthevalueofAn=1+dttn+1t1.withnN.

Question Number 28830    Answers: 0   Comments: 0

let give f(x)= ch(αx) and 2π periodic with α≠0 developp f at fourier series.

letgivef(x)=ch(αx)and2πperiodicwithα0developpfatfourierseries.

Question Number 28828    Answers: 0   Comments: 0

find f(x)=∫_0 ^1 ln(1+xt^2 )dt with ∣x∣<1 .

findf(x)=01ln(1+xt2)dtwithx∣<1.

Question Number 28827    Answers: 0   Comments: 0

let give F(x)=∫_0 ^∞ ((arctan(1+x(1+t^2 )))/(1+t^2 ))dt and x>0 calculate (dF/dx)(x).

letgiveF(x)=0arctan(1+x(1+t2))1+t2dtandx>0calculatedFdx(x).

Question Number 28826    Answers: 0   Comments: 0

let give f(x)= e^(−x) cosx and 2π periodic 1) developp f at fourier series 2) find the value of Σ_(n=−∞) ^(n=+∞) (((−1)^n )/(1+n^2 )) .

letgivef(x)=excosxand2πperiodic1)developpfatfourierseries2)findthevalueofn=n=+(1)n1+n2.

Question Number 28824    Answers: 0   Comments: 0

by using residus theorem find the value of A_n = ∫_0 ^∞ (dx/(1+x^n )) with n integr and n≥2.

byusingresidustheoremfindthevalueofAn=0dx1+xnwithnintegrandn2.

Question Number 28823    Answers: 0   Comments: 0

find I = ∫_(−∞) ^(+∞) (((x−1)cosx)/(x^2 −2x+2))dx and J= ∫_(−∞) ^(+∞) (((x−1)sinx)/(x^2 −2x +2)) dx.

findI=+(x1)cosxx22x+2dxandJ=+(x1)sinxx22x+2dx.

Question Number 28820    Answers: 0   Comments: 0

find the value of ∫_0 ^1 ((ln(1−(t^2 /4)))/t^2 )dt.

findthevalueof01ln(1t24)t2dt.

Question Number 28819    Answers: 0   Comments: 0

let give f(x)= ∫_0 ^1 ((ln(1−x^2 t^2 ))/t^2 )dt with ∣x∣<1 by using derivation under ∫ find the value of f(x).

letgivef(x)=01ln(1x2t2)t2dtwithx∣<1byusingderivationunderfindthevalueoff(x).

Question Number 28817    Answers: 0   Comments: 0

let give f(x)=e^(iαx) 2π prriodic and α ∈R−Z developp f at fourier series.

letgivef(x)=eiαx2πprriodicandαRZdeveloppfatfourierseries.

Question Number 28816    Answers: 0   Comments: 0

find the value of I= ∫_0 ^π (dθ/(1+cos^4 θ)) .

findthevalueofI=0πdθ1+cos4θ.

  Pg 306      Pg 307      Pg 308      Pg 309      Pg 310      Pg 311      Pg 312      Pg 313      Pg 314      Pg 315   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com