Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 313

Question Number 27999    Answers: 0   Comments: 1

find I_(n,m) = ∫_0 ^1 x^n (1−x)^m dx with (n,m)∈N^★^2 and calculate Σ_(n=0) ^∝ I_(n,m) .

findIn,m=01xn(1x)mdxwith(n,m)N2andcalculaten=0In,m.

Question Number 27974    Answers: 0   Comments: 1

let put f(t)=∫_0 ^∞ ((e^(−ax) − e^(−bx) )/x^2 ) e^(−tx^2 ) dx with t≥0 and a>0 and b>0 find a integral form of f(t).

letputf(t)=0eaxebxx2etx2dxwitht0anda>0andb>0findaintegralformoff(t).

Question Number 27951    Answers: 0   Comments: 0

Use the trapezoidal rule with 5 ordinates to evaluate ∫_( 0) ^( 0.8) e^x^2 dx

Usethetrapezoidalrulewith5ordinatestoevaluate00.8ex2dx

Question Number 27950    Answers: 0   Comments: 0

Find by the trapezoidal rule the approximate value of ∫_( 0) ^( 1) (dx/(1 + x^2 )). Use ordinates spaced at equal interval of width h = 0.1

Findbythetrapezoidalruletheapproximatevalueof01dx1+x2.Useordinatesspacedatequalintervalofwidthh=0.1

Question Number 27878    Answers: 0   Comments: 1

Question Number 27853    Answers: 0   Comments: 1

Question Number 27828    Answers: 1   Comments: 2

find the value of ∫_0 ^(π/2) (√(tanx))dx .

findthevalueof0π2tanxdx.

Question Number 27815    Answers: 1   Comments: 0

∫((cos x−cos 2x)/(1−cos x))dx

cosxcos2x1cosxdx

Question Number 27805    Answers: 0   Comments: 1

find ∫_1 ^∝ ((arctan(αx))/x^2 ) .

find1arctan(αx)x2.

Question Number 27804    Answers: 0   Comments: 1

calculate ∫_0 ^∝ ((e^(−ax) − e^(−bx) )/x^2 )dx with a>0 b>o

calculate0eaxebxx2dxwitha>0b>o

Question Number 27803    Answers: 0   Comments: 0

find the value of ∫_0 ^1 ((arctan(x +x^(−1) ))/(1+x^2 )) dx

findthevalueof01arctan(x+x1)1+x2dx

Question Number 27802    Answers: 0   Comments: 1

find the value of ∫_0 ^∞ (e^(−2x^2 ) /((3+x^2 )^2 ))dx .

findthevalueof0e2x2(3+x2)2dx.

Question Number 27797    Answers: 0   Comments: 1

find ∫ (√(2+tan^2 t)) dt.

find2+tan2tdt.

Question Number 27796    Answers: 0   Comments: 0

find ∫ (x^2 /((cosx +x sinx)^2 )) .

findx2(cosx+xsinx)2.

Question Number 27794    Answers: 0   Comments: 0

let give I(x)= ∫_0 ^π ln (1−2x cost +x^2 )dt by using the polynomial p(x)= (z+x)^(2n) −1 find the value of I(x).

letgiveI(x)=0πln(12xcost+x2)dtbyusingthepolynomialp(x)=(z+x)2n1findthevalueofI(x).

Question Number 27788    Answers: 0   Comments: 0

find the value of A_n = ∫_0 ^π ((sin(nt))/(sint))dt with n∈N^∗ .

findthevalueofAn=0πsin(nt)sintdtwithnN.

Question Number 27781    Answers: 0   Comments: 1

find the value of F(x)=∫_0 ^(π/2) ((ln(1+x sin^2 t))/(sin^2 t)) dt knowing that −1<x<1 .

findthevalueofF(x)=0π2ln(1+xsin2t)sin2tdtknowingthat1<x<1.

Question Number 27764    Answers: 1   Comments: 0

∫(√(tan x))dx

tanxdx

Question Number 27693    Answers: 1   Comments: 1

1) calculate ∫∫_(]0,1]×]0,(π/2)]) ((dxdy)/(1+(xtany)^2 )) 2) find the value of ∫_0 ^(π/2) (t/(tant))dt .

1)calculate]0,1]×]0,π2]dxdy1+(xtany)22)findthevalueof0π2ttantdt.

Question Number 27692    Answers: 0   Comments: 1

find by two ways the value of ∫∫_([0,1]) x^y dxdxy then calculate ∫_0 ^1 ((t−1)/(lnt))dt .

findbytwowaysthevalueof[0,1]xydxdxythencalculate01t1lntdt.

Question Number 27691    Answers: 0   Comments: 1

let give A=∫∫_(0≤y≤x≤1) ((dxdxy)/((1+x^2 )(1+y^2 ))) and B= ∫_0 ^(π/4) ((ln(2cos^2 θ))/(2cos(2θ)))dθ calculate A and prove that B=A.

letgiveA=0yx1dxdxy(1+x2)(1+y2)andB=0π4ln(2cos2θ)2cos(2θ)dθcalculateAandprovethatB=A.

Question Number 27690    Answers: 0   Comments: 1

find I= ∫∫_D ln(1+x+y)dxdy with D= {(x,y)∈R^2 / x+y≤1 and x≥0 and y≥0 }.

findI=Dln(1+x+y)dxdywithD={(x,y)R2/x+y1andx0andy0}.

Question Number 27757    Answers: 1   Comments: 0

calculate I= ∫_0 ^(π/2) (dx/(1+cosx)) and J= ∫_0^ ^(π/2) ((cosx)/(1+cosx))dx .

calculateI=0π2dx1+cosxandJ=0π2cosx1+cosxdx.

Question Number 28038    Answers: 0   Comments: 0

let give f(x)=(√(x+y)) +1 and D={(x,y)∈R^2 / 0≤x≤1 and −1≤y≤1} find the value of ∫∫ f(x,y)dxdy .

letgivef(x)=x+y+1andD={(x,y)R2/0x1and1y1}findthevalueoff(x,y)dxdy.

Question Number 27684    Answers: 0   Comments: 1

1) prove the existence of the integral I=∫_0 ^(π/2) ((ln(1+cosx))/(cosx))dx 2)prove that I= ∫∫_D ((siny)/(1+cosx cosy))dxdy with D=[0,(π/2)]^2 3)find the value of I.

1)provetheexistenceoftheintegralI=0π2ln(1+cosx)cosxdx2)provethatI=Dsiny1+cosxcosydxdywithD=[0,π2]23)findthevalueofI.

Question Number 27666    Answers: 0   Comments: 0

let give I_n = ∫_0 ^1 (x^n /(1+x^n ))dx (1) prove that lim_(n−>∝) I_n =0 (2)calculate I_n +I_(n+1) (3) find Σ_(n=1) ^∝ (((−1)^(n−1) )/n) .

letgiveIn=01xn1+xndx(1)provethatlimn>∝In=0(2)calculateIn+In+1(3)findn=1(1)n1n.

  Pg 308      Pg 309      Pg 310      Pg 311      Pg 312      Pg 313      Pg 314      Pg 315      Pg 316      Pg 317   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com