Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 314

Question Number 27615    Answers: 0   Comments: 2

∫x^(5/2) (1−x)^(3/2) dx

x5/2(1x)3/2dx

Question Number 27614    Answers: 0   Comments: 2

∫((cosx)/(2−cosx))dx

cosx2cosxdx

Question Number 27613    Answers: 1   Comments: 1

find the value of ∫_0 ^∞ e^(−[x] −x) dx .

findthevalueof0e[x]xdx.

Question Number 27612    Answers: 1   Comments: 0

∫(1/(3+cos^2 x))dx

13+cos2xdx

Question Number 27611    Answers: 1   Comments: 0

∫(1/(2sin^2 x + 4cos^2 x))dx

12sin2x+4cos2xdx

Question Number 27607    Answers: 0   Comments: 0

Question Number 27600    Answers: 0   Comments: 1

find ∫_0 ^π (t/(2+sint)) dt

find0πt2+sintdt

Question Number 27597    Answers: 0   Comments: 0

find ∫ ((√(cos(2x)))/(cosx)) dx.

findcos(2x)cosxdx.

Question Number 27596    Answers: 0   Comments: 1

find ∫ ^3 (√( x^2 −x^3 )) dx

find3x2x3dx

Question Number 27595    Answers: 0   Comments: 1

find ∫∫_D xy(√( x^2 +y^2 )) dxdy with D={ (x,y)∈R^2 / x^2 +2y^2 ≤1 ,x≥0 ,y ≥0}

findDxyx2+y2dxdywithD={(x,y)R2/x2+2y21,x0,y0}

Question Number 27539    Answers: 2   Comments: 1

Question Number 27502    Answers: 0   Comments: 1

find ∫_0 ^(π/2) ((ln(1+xsin^2 t))/(sin^2 t))dt with −1<x<1 .

find0π2ln(1+xsin2t)sin2tdtwith1<x<1.

Question Number 27500    Answers: 0   Comments: 2

find ∫∫_Δ (√(4 −x^2 −y^2 )) dxdy with Δ={(x,y) ∈R^2 / x^2 +y^2 ≤2x}

findΔ4x2y2dxdywithΔ={(x,y)R2/x2+y22x}

Question Number 27496    Answers: 0   Comments: 0

let give f(x)= ∫_0 ^∝ (1/(√t)) e^(−(1+ix)t) dt calculate f^′ (x) prove that ∃λ∈R/(x+i)^2 (f(x))^2 = λ then find ∫_0 ^∝ e^(−t^2 ) dt .

letgivef(x)=01te(1+ix)tdtcalculatef(x)provethatλR/(x+i)2(f(x))2=λthenfind0et2dt.

Question Number 27495    Answers: 0   Comments: 1

find α and β from R /∫_0 ^π (αt^2 +βt)cos(nt)dt= (1/n^2 ) for all number n from N^(∗ ) then find Σ_(n=1) ^∝ (1/n^2 ) .

findαandβfromR/0π(αt2+βt)cos(nt)dt=1n2forallnumbernfromNthenfindn=11n2.

Question Number 27481    Answers: 0   Comments: 1

find the value of ∫_0 ^∝ ((√x)/(e^x −1))dx .

findthevalueof0xex1dx.

Question Number 27464    Answers: 0   Comments: 5

Show that: ∫_( 0) ^( 2π) ((cos(3x))/(5 − 4cos(x))) dx = (π/(12))

Showthat:02πcos(3x)54cos(x)dx=π12

Question Number 27410    Answers: 0   Comments: 2

∫_0 ^∞ ((sinxdx)/x)

0sinxdxx

Question Number 27400    Answers: 1   Comments: 4

Evaluate ∫_r ^0 (√(x/(r−x))) dx

Evaluate0rxrxdx

Question Number 27392    Answers: 0   Comments: 0

Show that the integral: ∫ e^(−x^2 ) dx Can′t be calculated trivially.

Showthattheintegral:ex2dxCantbecalculatedtrivially.

Question Number 27345    Answers: 0   Comments: 1

prove that ∫_0 ^∞ (t^(x−1) /(e^t −1))dt =ξ(x)Γ(x) with ξ(x)= Σ_(n=1) ^∝ (1/n^x ) and Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt ( x>1)

provethat0tx1et1dt=ξ(x)Γ(x)withξ(x)=n=11nxandΓ(x)=0tx1etdt(x>1)

Question Number 27342    Answers: 0   Comments: 1

find f(x)= ∫_0 ^∞ (e^(−x(1+t^2 )) /(1+t^2 )) dt interms ofx with x≥0 and calculate ∫_0 ^∞ e^(−t^2 ) dt .

findf(x)=0ex(1+t2)1+t2dtintermsofxwithx0andcalculate0et2dt.

Question Number 27341    Answers: 0   Comments: 0

prove that ∫_0 ^∞ e^(−(t^2 +(1/t^2 ))) dt is convergeny and find its value .

provethat0e(t2+1t2)dtisconvergenyandfinditsvalue.

Question Number 27309    Answers: 1   Comments: 0

find the value of ∫_0 ^∝ (((−1)^([x]) )/((2x+1)^2 ))dx

findthevalueof0(1)[x](2x+1)2dx

Question Number 27282    Answers: 0   Comments: 1

∫log(2+x^2 )dx

log(2+x2)dx

Question Number 27271    Answers: 1   Comments: 0

Proof ∫(1/(a^2 −x^2 ))dx =(1/(2a))ln∣((a+x)/(a−x))∣+c

Proof1a2x2dx=12alna+xax+c

  Pg 309      Pg 310      Pg 311      Pg 312      Pg 313      Pg 314      Pg 315      Pg 316      Pg 317      Pg 318   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com