Question and Answers Forum |
IntegrationQuestion and Answers: Page 314 |
∫x^(5/2) (1−x)^(3/2) dx |
∫((cosx)/(2−cosx))dx |
find the value of ∫_0 ^∞ e^(−[x] −x) dx . |
∫(1/(3+cos^2 x))dx |
∫(1/(2sin^2 x + 4cos^2 x))dx |
![]() |
find ∫_0 ^π (t/(2+sint)) dt |
find ∫ ((√(cos(2x)))/(cosx)) dx. |
find ∫ ^3 (√( x^2 −x^3 )) dx |
find ∫∫_D xy(√( x^2 +y^2 )) dxdy with D={ (x,y)∈R^2 / x^2 +2y^2 ≤1 ,x≥0 ,y ≥0} |
![]() |
find ∫_0 ^(π/2) ((ln(1+xsin^2 t))/(sin^2 t))dt with −1<x<1 . |
find ∫∫_Δ (√(4 −x^2 −y^2 )) dxdy with Δ={(x,y) ∈R^2 / x^2 +y^2 ≤2x} |
let give f(x)= ∫_0 ^∝ (1/(√t)) e^(−(1+ix)t) dt calculate f^′ (x) prove that ∃λ∈R/(x+i)^2 (f(x))^2 = λ then find ∫_0 ^∝ e^(−t^2 ) dt . |
find α and β from R /∫_0 ^π (αt^2 +βt)cos(nt)dt= (1/n^2 ) for all number n from N^(∗ ) then find Σ_(n=1) ^∝ (1/n^2 ) . |
find the value of ∫_0 ^∝ ((√x)/(e^x −1))dx . |
Show that: ∫_( 0) ^( 2π) ((cos(3x))/(5 − 4cos(x))) dx = (π/(12)) |
∫_0 ^∞ ((sinxdx)/x) |
Evaluate ∫_r ^0 (√(x/(r−x))) dx |
Show that the integral: ∫ e^(−x^2 ) dx Can′t be calculated trivially. |
prove that ∫_0 ^∞ (t^(x−1) /(e^t −1))dt =ξ(x)Γ(x) with ξ(x)= Σ_(n=1) ^∝ (1/n^x ) and Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt ( x>1) |
find f(x)= ∫_0 ^∞ (e^(−x(1+t^2 )) /(1+t^2 )) dt interms ofx with x≥0 and calculate ∫_0 ^∞ e^(−t^2 ) dt . |
prove that ∫_0 ^∞ e^(−(t^2 +(1/t^2 ))) dt is convergeny and find its value . |
find the value of ∫_0 ^∝ (((−1)^([x]) )/((2x+1)^2 ))dx |
∫log(2+x^2 )dx |
Proof ∫(1/(a^2 −x^2 ))dx =(1/(2a))ln∣((a+x)/(a−x))∣+c |
Pg 309 Pg 310 Pg 311 Pg 312 Pg 313 Pg 314 Pg 315 Pg 316 Pg 317 Pg 318 |