Question and Answers Forum |
IntegrationQuestion and Answers: Page 316 |
∫_a ^x (x−t)^5 y(t)dt=4x^6 y(x)=... |
find the value of ∫_0 ^∞ e^(−[x]) sinxdx in that [x]=E(x) |
let put F(x)= ∫_0 ^∞ e^(−tx) ((sint)/t) dt with x≥0 we accept that F is class C^1 on [0,∝[ calculate (∂F/∂x) and find F(x) then find the value of ∫_0 ^∞ ((sint)/t) dt |
find the value of ∫_0 ^∞ ((sinx)/(x(1+x^2 )))dx |
∫_0 ^Π ((xsinx)/(1+cos^2 x))dx |
∫_( −1) ^( 1) ((xdx)/((x^2 + 1)^2 )) |
![]() |
∫_0 ^(2π) cos^2 θsin θdθ |
∫(√(tanx)) |
![]() |
developp the function f(x)=/x/ 2π periodic in fourier serie .(f even) |
calculate ∫∫ _D cos(x^2 +y^2 )dxdy with D=C(o.(√(π/2))). |
find the value of ∫∫_D x^2 y dxdy on the domain D={(x.y)∈R^2 / x^2 +y^2 −2x≤0 and y≥0} |
find ∫ (dx/(x(√(1+x^2 )))) and calculate ∫_1 ^3 (dx/(x(√(1+x^2 )))) |
find the value of ∫_0 ^(1 ) (dx/(x^2 +2x +5)) . |
find ∫ (dx/(x(√(x^2 +x−1)))) |
find the value of ∫_0 ^∝ e^(−x) lnx dx for that use A_n = ∫_0 ^n (1− (t/n))^(n−1) ln(t) dt . |
find the value of ∫_0 ^( ∝ ) ((cos(αx))/(1+x^2 )) dx . |
find lim_(n−>∝) ∫_0 ^n (1−(t/n))^(n−1) dt . |
find the value of ∫_0 ^(π/4) tan^n x dx with n element from N. |
find the value of ∫_0 ^(π/2) ln(cosθ)dθ and ∫_0 ^(π/2) ln(sinθ)dθ . |
∫(√(cosec(x)))dx |
lim_(n→∞) ∫_0 ^1 (x^n /(cos x))dx= |
prove that Σ_(k=0) ^(k=n) cos^2 (kx)= ((n+1)/2) + ((sin((n+1)x)cos(nx))/(2 sinx)) x from R−{ kπ.kεZ}then find the value of integral ∫_0 ^π ((sin((n+1)x)cos(nx))/(sinx))dx |
∫(√(sin θ))dθ integration ?? solve quickly |
Prove that If f(x) is Riemann integrable on [a,b] and ∃M>0 s.t. ∀x∈[a,b] (f(x)≠0 and ∣f(x)∣<M and ∣(1/(f(x)))∣<M), then (1/(f(x))) is Riemann integrable on [a,b]. |
Pg 311 Pg 312 Pg 313 Pg 314 Pg 315 Pg 316 Pg 317 Pg 318 Pg 319 Pg 320 |