Question and Answers Forum |
IntegrationQuestion and Answers: Page 317 |
![]() |
answer to 26024 let put c= ∫_0 ^∞ cos(ax^2 )dx and c = ∫_0 ^∞ sin(ax^2 )dx ew have c−is = ∫_0 ^∞ e^(−iax^2 ) dx =2^(−1) ∫_R e^(−iax^2 ) dx and i put x^(1/2) =r(x)(notation) so 2(c−is) = ∫_R e^(−(r(ia)x)^2 ) dx and by the changement t= r(ia) x we find 2(c+is) = (r(ia))^(−1) ∫_R e^(−t^2 ) dt = r(π)/r(ia) but r(ia) =r(i) r(a) = r(a) e^ −−>2(c+is) = r(π) r(a)^(−1) e^(−iπ/4) ^) −−> c = r(2π)/_(4r(a)) and s = r(2π)/_(4r(a)) |
∫((asin^3 θ+bcos^3 θ)/(sin^2 θ.cos^2 θ))dθ |
let s give n from N find the value of ∫_0 ^1 (1 +x^2 )^(n/2) sin(n arctan(x))dx |
find a integral form of L( e^(−x^2 ) ) L(f) means laplace transform of f . |
calculate ∫_0 ^1 (1+t^2 )^(1/2) dt |
if (1+cos(x))^(−1) = a_0 /_2 +Σ_(n=1) ^(n=∝) a_n cos(nx)) find a_0 and a_n ...you can use fourier series. |
let s give n from N find the value of ∫_0 ^π ((sin(nx))/(sinx)) dx . |
e give a element from]0.∝[ find the value of ∫_0 ^∞ cos( ax^2 ) and ∫_0 ^∞ sin( ax^2 )dx. |
answer to question25980 key of slution we develop the foction f(x) = sin(px) at fourier serie((f 2π periodic) f(x)= Σ_(n=1) ^(n=∝) a_n sin(nx) and a_n = 2/T ∫_([T]) sin(px)sin(nx)dx (T=2π) a_n =2π^(−1) ∫_0 ^π sin(px)sin(nx)dx−>a_n = (−1)^n sin(pπ).2n π^(−1) (n^2 − p^2 )^(−1) −−>sin(px)= 2 sin(pπ).π^(−1) Σ_(n=1) ^∝ n(−1)^(n−1) (n^2 −p^2 )^(−1) sin(nx) = 2π^(−1) sin(pπ)((1^2 −p^2 )^(−1) sin (x) −2(2^2 −p^2 )^(−1) sin(2x)+...) |
solve the integral ∫sin^4 θdθ |
answer to 25955.we introduce the parametric function F(t) =∫_0 ^∞ ln(1+(1+x^2_ )t)(1+x^2 )^(−1) dx after verifying that F is derivable on[0.∝[ we find ∂F/∂t= ∫_0 ^∞ ( (1+(1+x^2 )t)^(−1) dx ∂F/∂t=1/2 ∫_R (tx^2 +t+1)^(−1) dx we put f(z) =(tz^2 +z+1)^(−1) let find the poles of f..tz^2 +z+1=0 <−> z=+−i((t+1)t^(−1) )^(1/2) and the poles are z_0 =i((t+1)t^(−1) )^(1/2) and z_1 =−i((t+1)t^(−1) )^(1/2) and f(t) =(t(t−z_0 )(t−z_1 ))^(−1) by residus theorem ∫_R f(z)dz =2iπ R(f.z_0 ) =2iπ (t(z_0 −z_1 ))^(−1) =π t^(−1/2) (t+1)^(−1/2 ) −>∂F/∂t =π 2^(−1) t^(−1/2) (1+t)^(−1/2) −>F(t) =π 2^(−1 ) ∫_0 ^t x^(−1/2) (1+x)^(−1/2) dx +α α=F(0)=0 and F(t) =π2^(−1) ∫_0 ^t x^(−1/2) (1+x)^(−1/2) dx and by the changement x^(1/2) =u we find F(t) = π ln( t^(1/2) +(1+t)^(1/2) ) so ∫_0 ^∞ ln(2+x^2 )(1+x^2 )^(−1) dx=F(1)=πln(1+2^(1/2) ) |
find the value of ∫_0 ^∞ ln(2+x^2 )(1+x^2 )^(−1) dx |
answer to 25824 we have a^(−x^2 ) = e^(−x^2_ ln(a)) so for a>1 ln(a)=( (ln(a))^(1/2) )^2 >>>>∫_R a^(−^ x^2 ) = ∫_R e^(−(x (ln(a)^(1/2) )^2 ) dx and with the changement t=x (ln(a)^(1/2) >>>>x=t ( ln(a))^(−1/2) we have ∫_R a^(−x^2 ) dx = π^(1/2) (ln(a))^(−1/2) ...if 0<a<1 ln(a)<0 and the integrale is divergente... |
![]() |
![]() |
find the value of integral ∫_R (z−a)^(−1) dz with a from C aplly this result to find the value of ∫_0 ^∞ (2 +x^4_ )^(−1) dx. |
∫((2+2x)/((x−1)(x^2 +1)))dx |
∫(x^n lnx)dx |
if ∫_R e^(−x^2 ) dx = π^(1/2) find value of ∫_R a^(−x^2_ ) dx with a>0 and a not 1. |
answer to q25796 f_ ind the value off(x)= ∫_0^ ^π_ ln(1+xcosθ)dθ with 0<x<1 ∂f/∂x= ∫_0 ^π cosθ(1+xcosθ)^(−1) dθ=πx^(−1) −x^(−1) ∫_0 ^π (1+xcosθ)^(−1) dθand by the changeent tanθ=u then the changement u=((1+x)(1+x)^(−1^ ) )^ .t.we find ∫_0 ^θ (1+xcosθ)^(−1) dθ =π(1−x^2_ )^(−1/2) so ∂f/∂x=πx^(−1) −πx^(−1) (1−x^(−1/2) ) so f(x)= π ln(x)−π∫^x t^(−1) (1−t^2 )^(−1/2) dt but ∫^x t^(−1) (1−t^2 )dt=−1. 2^(−1) ln((1+(1−x^2 )^(1/2) .(1−(1−x^2 )^(1/2) )^(−1) ) and f(x)=πln(x)+π.2^(−1) ln( (1+(1−x^2 )^(1/2) ((1−(1−x^2 )^(1/2) )^(−1) +β β=f(1)=∫_0 ^(π=) ln(1+cosθ)dθ=−πln(2) so ∫_0 ^π (1+xcosθ)dθ = πlnx +π2^(−1) ln((1+(1−x^2 )^(1/2^ ) )((1−(1−x^2 )^(1/2) )^(−1) −πln(2). |
![]() |
find the value of f(x)=∫_0^ ^π ln( 1+xcosθ)dθ with 0<x<1 |
![]() |
∫(1/(sin x+cos x))dx |
a−nser to question 25765...we put I=∫_0 ^∞ (cos(x^(2n) )(1+x^2 )^(−1) dx and J=∫_0 ^∞ sin(x^(2n) )(1+x^2 )^(−1) dx...we have 2(I+iJ)=∫_R e^(ix^(2n) ) (1+x^2 )^(−1) dx...let f(z)=e^(ix^(2n) ) (1+x^2 )^(−1) by residus therem ∫_R f(z)dz = 2iπRes(f.i) but Res(f.i)= lim_(z−i) (z−i)f(z)=e^(i(i)^(2n) ) = e^(i(−1)_ ^n ) (2i)^(−1) then ∫_R f(z)dz = πe^((−1)^n ) = π( cos(−1)^n +isin(−1)^n ) then ∫_0 ^∞ cos(x^(2n) )(1+x^2 )^(−1) dx =π2^(−1) cos(−1)^n and ∫_0 ^∞ sin(x^(2n) )(1+x^2 )^(−1) dx=π.2^(−1) sin(−1)^n_ <>.... |
Pg 312 Pg 313 Pg 314 Pg 315 Pg 316 Pg 317 Pg 318 Pg 319 Pg 320 Pg 321 |