Question and Answers Forum |
IntegrationQuestion and Answers: Page 317 |
calculate I= ∫_0 ^(π/2) (dx/(1+cosx)) and J= ∫_0^ ^(π/2) ((cosx)/(1+cosx))dx . |
let give f(x)=(√(x+y)) +1 and D={(x,y)∈R^2 / 0≤x≤1 and −1≤y≤1} find the value of ∫∫ f(x,y)dxdy . |
1) prove the existence of the integral I=∫_0 ^(π/2) ((ln(1+cosx))/(cosx))dx 2)prove that I= ∫∫_D ((siny)/(1+cosx cosy))dxdy with D=[0,(π/2)]^2 3)find the value of I. |
let give I_n = ∫_0 ^1 (x^n /(1+x^n ))dx (1) prove that lim_(n−>∝) I_n =0 (2)calculate I_n +I_(n+1) (3) find Σ_(n=1) ^∝ (((−1)^(n−1) )/n) . |
let give I= ∫_0 ^1 ((ln(1+x))/(1+x^2 ))dx and J=∫∫_([0,1]^2 ) (x/((1+x^2 )(1+xy)))dxdy calculate J by two methods then find the value of I. |
![]() |
find the value of ∫_0 ^∞ ((arctan(x+(1/x)))/(1+x^2 ))dx . |
find the value of ∫_0 ^∞ (((−1)^x^2 )/(3+x^2 ))dx . |
find the value of ∫_0 ^∞ ((cos(2x))/((1+x^2 )^2 ))dx. |
find ∫_0 ^1 e^(−2x) ln(1+x)dx . |
∫x^(5/2) (1−x)^(3/2) dx |
∫((cosx)/(2−cosx))dx |
find the value of ∫_0 ^∞ e^(−[x] −x) dx . |
∫(1/(3+cos^2 x))dx |
∫(1/(2sin^2 x + 4cos^2 x))dx |
![]() |
find ∫_0 ^π (t/(2+sint)) dt |
find ∫ ((√(cos(2x)))/(cosx)) dx. |
find ∫ ^3 (√( x^2 −x^3 )) dx |
find ∫∫_D xy(√( x^2 +y^2 )) dxdy with D={ (x,y)∈R^2 / x^2 +2y^2 ≤1 ,x≥0 ,y ≥0} |
![]() |
find ∫_0 ^(π/2) ((ln(1+xsin^2 t))/(sin^2 t))dt with −1<x<1 . |
find ∫∫_Δ (√(4 −x^2 −y^2 )) dxdy with Δ={(x,y) ∈R^2 / x^2 +y^2 ≤2x} |
let give f(x)= ∫_0 ^∝ (1/(√t)) e^(−(1+ix)t) dt calculate f^′ (x) prove that ∃λ∈R/(x+i)^2 (f(x))^2 = λ then find ∫_0 ^∝ e^(−t^2 ) dt . |
find α and β from R /∫_0 ^π (αt^2 +βt)cos(nt)dt= (1/n^2 ) for all number n from N^(∗ ) then find Σ_(n=1) ^∝ (1/n^2 ) . |
find the value of ∫_0 ^∝ ((√x)/(e^x −1))dx . |
Pg 312 Pg 313 Pg 314 Pg 315 Pg 316 Pg 317 Pg 318 Pg 319 Pg 320 Pg 321 |