Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 317

Question Number 26125    Answers: 0   Comments: 1

Question Number 26107    Answers: 0   Comments: 0

answer to 26024 let put c= ∫_0 ^∞ cos(ax^2 )dx and c = ∫_0 ^∞ sin(ax^2 )dx ew have c−is = ∫_0 ^∞ e^(−iax^2 ) dx =2^(−1) ∫_R e^(−iax^2 ) dx and i put x^(1/2) =r(x)(notation) so 2(c−is) = ∫_R e^(−(r(ia)x)^2 ) dx and by the changement t= r(ia) x we find 2(c+is) = (r(ia))^(−1) ∫_R e^(−t^2 ) dt = r(π)/r(ia) but r(ia) =r(i) r(a) = r(a) e^ −−>2(c+is) = r(π) r(a)^(−1) e^(−iπ/4) ^) −−> c = r(2π)/_(4r(a)) and s = r(2π)/_(4r(a))

answerto26024letputc=0cos(ax2)dxandc=0sin(ax2)dxewhavecis=0eiax2dx=21Reiax2dxandiputx1/2=r(x)(notation)so2(cis)=Re(r(ia)x)2dxandbythechangementt=r(ia)xwefind2(c+is)=(r(ia))1Ret2dt=r(π)/r(ia)butr(ia)=r(i)r(a)=r(a)e>2(c+is)=r(π)r(a)1eiπ/4)>c=r(2π)/4r(a)ands=r(2π)/4r(a)

Question Number 26090    Answers: 1   Comments: 0

∫((asin^3 θ+bcos^3 θ)/(sin^2 θ.cos^2 θ))dθ

asin3θ+bcos3θsin2θ.cos2θdθ

Question Number 26059    Answers: 0   Comments: 0

let s give n from N find the value of ∫_0 ^1 (1 +x^2 )^(n/2) sin(n arctan(x))dx

letsgivenfromNfindthevalueof01(1+x2)n/2sin(narctan(x))dx

Question Number 26057    Answers: 0   Comments: 1

find a integral form of L( e^(−x^2 ) ) L(f) means laplace transform of f .

findaintegralformofL(ex2)L(f)meanslaplacetransformoff.

Question Number 26055    Answers: 1   Comments: 0

calculate ∫_0 ^1 (1+t^2 )^(1/2) dt

calculate01(1+t2)1/2dt

Question Number 26054    Answers: 0   Comments: 0

if (1+cos(x))^(−1) = a_0 /_2 +Σ_(n=1) ^(n=∝) a_n cos(nx)) find a_0 and a_n ...you can use fourier series.

if(1+cos(x))1=a0/2+n=1n=∝ancos(nx))finda0andan...youcanusefourierseries.

Question Number 26110    Answers: 0   Comments: 0

let s give n from N find the value of ∫_0 ^π ((sin(nx))/(sinx)) dx .

letsgivenfromNfindthevalueof0πsin(nx)sinxdx.

Question Number 26024    Answers: 0   Comments: 0

e give a element from]0.∝[ find the value of ∫_0 ^∞ cos( ax^2 ) and ∫_0 ^∞ sin( ax^2 )dx.

egiveaelementfrom]0.[findthevalueof0cos(ax2)and0sin(ax2)dx.

Question Number 26023    Answers: 0   Comments: 0

answer to question25980 key of slution we develop the foction f(x) = sin(px) at fourier serie((f 2π periodic) f(x)= Σ_(n=1) ^(n=∝) a_n sin(nx) and a_n = 2/T ∫_([T]) sin(px)sin(nx)dx (T=2π) a_n =2π^(−1) ∫_0 ^π sin(px)sin(nx)dx−>a_n = (−1)^n sin(pπ).2n π^(−1) (n^2 − p^2 )^(−1) −−>sin(px)= 2 sin(pπ).π^(−1) Σ_(n=1) ^∝ n(−1)^(n−1) (n^2 −p^2 )^(−1) sin(nx) = 2π^(−1) sin(pπ)((1^2 −p^2 )^(−1) sin (x) −2(2^2 −p^2 )^(−1) sin(2x)+...)

answertoquestion25980keyofslutionwedevelopthefoctionf(x)=sin(px)atfourierserie((f2πperiodic)f(x)=n=1n=∝ansin(nx)andan=2/T[T]sin(px)sin(nx)dx(T=2π)an=2π10πsin(px)sin(nx)dx>an=(1)nsin(pπ).2nπ1(n2p2)1>sin(px)=2sin(pπ).π1n=1n(1)n1(n2p2)1sin(nx)=2π1sin(pπ)((12p2)1sin(x)2(22p2)1sin(2x)+...)

Question Number 25965    Answers: 1   Comments: 0

solve the integral ∫sin^4 θdθ

solvetheintegralsin4θdθ

Question Number 25960    Answers: 0   Comments: 0

answer to 25955.we introduce the parametric function F(t) =∫_0 ^∞ ln(1+(1+x^2_ )t)(1+x^2 )^(−1) dx after verifying that F is derivable on[0.∝[ we find ∂F/∂t= ∫_0 ^∞ ( (1+(1+x^2 )t)^(−1) dx ∂F/∂t=1/2 ∫_R (tx^2 +t+1)^(−1) dx we put f(z) =(tz^2 +z+1)^(−1) let find the poles of f..tz^2 +z+1=0 <−> z=+−i((t+1)t^(−1) )^(1/2) and the poles are z_0 =i((t+1)t^(−1) )^(1/2) and z_1 =−i((t+1)t^(−1) )^(1/2) and f(t) =(t(t−z_0 )(t−z_1 ))^(−1) by residus theorem ∫_R f(z)dz =2iπ R(f.z_0 ) =2iπ (t(z_0 −z_1 ))^(−1) =π t^(−1/2) (t+1)^(−1/2 ) −>∂F/∂t =π 2^(−1) t^(−1/2) (1+t)^(−1/2) −>F(t) =π 2^(−1 ) ∫_0 ^t x^(−1/2) (1+x)^(−1/2) dx +α α=F(0)=0 and F(t) =π2^(−1) ∫_0 ^t x^(−1/2) (1+x)^(−1/2) dx and by the changement x^(1/2) =u we find F(t) = π ln( t^(1/2) +(1+t)^(1/2) ) so ∫_0 ^∞ ln(2+x^2 )(1+x^2 )^(−1) dx=F(1)=πln(1+2^(1/2) )

answerto25955.weintroducetheparametricfunctionF(t)=0ln(1+(1+x2)t)(1+x2)1dxafterverifyingthatFisderivableon[0.[wefindF/t=0((1+(1+x2)t)1dxF/t=1/2R(tx2+t+1)1dxweputf(z)=(tz2+z+1)1letfindthepolesoff..tz2+z+1=0<>z=+i((t+1)t1)1/2andthepolesarez0=i((t+1)t1)1/2andz1=i((t+1)t1)1/2andf(t)=(t(tz0)(tz1))1byresidustheoremRf(z)dz=2iπR(f.z0)=2iπ(t(z0z1))1=πt1/2(t+1)1/2>F/t=π21t1/2(1+t)1/2>F(t)=π210tx1/2(1+x)1/2dx+αα=F(0)=0andF(t)=π210tx1/2(1+x)1/2dxandbythechangementx1/2=uwefindF(t)=πln(t1/2+(1+t)1/2)so0ln(2+x2)(1+x2)1dx=F(1)=πln(1+21/2)

Question Number 25955    Answers: 0   Comments: 0

find the value of ∫_0 ^∞ ln(2+x^2 )(1+x^2 )^(−1) dx

findthevalueof0ln(2+x2)(1+x2)1dx

Question Number 25932    Answers: 0   Comments: 0

answer to 25824 we have a^(−x^2 ) = e^(−x^2_ ln(a)) so for a>1 ln(a)=( (ln(a))^(1/2) )^2 >>>>∫_R a^(−^ x^2 ) = ∫_R e^(−(x (ln(a)^(1/2) )^2 ) dx and with the changement t=x (ln(a)^(1/2) >>>>x=t ( ln(a))^(−1/2) we have ∫_R a^(−x^2 ) dx = π^(1/2) (ln(a))^(−1/2) ...if 0<a<1 ln(a)<0 and the integrale is divergente...

answerto25824wehaveax2=ex2ln(a)sofora>1ln(a)=((ln(a))1/2)2>>>>Rax2=Re(x(ln(a)1/2)2dxandwiththechangementt=x(ln(a)1/2>>>>x=t(ln(a))1/2wehaveRax2dx=π1/2(ln(a))1/2...if0<a<1ln(a)<0andtheintegraleisdivergente...

Question Number 25887    Answers: 1   Comments: 0

Question Number 25868    Answers: 0   Comments: 3

Question Number 25851    Answers: 0   Comments: 1

find the value of integral ∫_R (z−a)^(−1) dz with a from C aplly this result to find the value of ∫_0 ^∞ (2 +x^4_ )^(−1) dx.

findthevalueofintegralR(za)1dzwithafromCapllythisresulttofindthevalueof0(2+x4)1dx.

Question Number 25865    Answers: 1   Comments: 0

∫((2+2x)/((x−1)(x^2 +1)))dx

2+2x(x1)(x2+1)dx

Question Number 25837    Answers: 1   Comments: 0

∫(x^n lnx)dx

(xnlnx)dx

Question Number 25824    Answers: 0   Comments: 0

if ∫_R e^(−x^2 ) dx = π^(1/2) find value of ∫_R a^(−x^2_ ) dx with a>0 and a not 1.

ifRex2dx=π1/2findvalueofRax2dxwitha>0andanot1.

Question Number 25821    Answers: 0   Comments: 0

answer to q25796 f_ ind the value off(x)= ∫_0^ ^π_ ln(1+xcosθ)dθ with 0<x<1 ∂f/∂x= ∫_0 ^π cosθ(1+xcosθ)^(−1) dθ=πx^(−1) −x^(−1) ∫_0 ^π (1+xcosθ)^(−1) dθand by the changeent tanθ=u then the changement u=((1+x)(1+x)^(−1^ ) )^ .t.we find ∫_0 ^θ (1+xcosθ)^(−1) dθ =π(1−x^2_ )^(−1/2) so ∂f/∂x=πx^(−1) −πx^(−1) (1−x^(−1/2) ) so f(x)= π ln(x)−π∫^x t^(−1) (1−t^2 )^(−1/2) dt but ∫^x t^(−1) (1−t^2 )dt=−1. 2^(−1) ln((1+(1−x^2 )^(1/2) .(1−(1−x^2 )^(1/2) )^(−1) ) and f(x)=πln(x)+π.2^(−1) ln( (1+(1−x^2 )^(1/2) ((1−(1−x^2 )^(1/2) )^(−1) +β β=f(1)=∫_0 ^(π=) ln(1+cosθ)dθ=−πln(2) so ∫_0 ^π (1+xcosθ)dθ = πlnx +π2^(−1) ln((1+(1−x^2 )^(1/2^ ) )((1−(1−x^2 )^(1/2) )^(−1) −πln(2).

answertoq25796findthevalueoff(x)=0πln(1+xcosθ)dθwith0<x<1f/x=0πcosθ(1+xcosθ)1dθ=πx1x10π(1+xcosθ)1dθandbythechangeenttanθ=uthenthechangementu=((1+x)(1+x)1).t.wefind0θ(1+xcosθ)1dθ=π(1x2)1/2sof/x=πx1πx1(1x1/2)sof(x)=πln(x)πxt1(1t2)1/2dtbutxt1(1t2)dt=1.21ln((1+(1x2)1/2.(1(1x2)1/2)1)andf(x)=πln(x)+π.21ln((1+(1x2)1/2((1(1x2)1/2)1+ββ=f(1)=0π=ln(1+cosθ)dθ=πln(2)so0π(1+xcosθ)dθ=πlnx+π21ln((1+(1x2)1/2)((1(1x2)1/2)1πln(2).

Question Number 25811    Answers: 0   Comments: 1

Question Number 25796    Answers: 0   Comments: 0

find the value of f(x)=∫_0^ ^π ln( 1+xcosθ)dθ with 0<x<1

findthevalueoff(x)=0πln(1+xcosθ)dθwith0<x<1

Question Number 26952    Answers: 1   Comments: 0

Question Number 25777    Answers: 1   Comments: 0

∫(1/(sin x+cos x))dx

1sinx+cosxdx

Question Number 25769    Answers: 0   Comments: 0

a−nser to question 25765...we put I=∫_0 ^∞ (cos(x^(2n) )(1+x^2 )^(−1) dx and J=∫_0 ^∞ sin(x^(2n) )(1+x^2 )^(−1) dx...we have 2(I+iJ)=∫_R e^(ix^(2n) ) (1+x^2 )^(−1) dx...let f(z)=e^(ix^(2n) ) (1+x^2 )^(−1) by residus therem ∫_R f(z)dz = 2iπRes(f.i) but Res(f.i)= lim_(z−i) (z−i)f(z)=e^(i(i)^(2n) ) = e^(i(−1)_ ^n ) (2i)^(−1) then ∫_R f(z)dz = πe^((−1)^n ) = π( cos(−1)^n +isin(−1)^n ) then ∫_0 ^∞ cos(x^(2n) )(1+x^2 )^(−1) dx =π2^(−1) cos(−1)^n and ∫_0 ^∞ sin(x^(2n) )(1+x^2 )^(−1) dx=π.2^(−1) sin(−1)^n_ <>....

ansertoquestion25765...weputI=0(cos(x2n)(1+x2)1dxandJ=0sin(x2n)(1+x2)1dx...wehave2(I+iJ)=Reix2n(1+x2)1dx...letf(z)=eix2n(1+x2)1byresidustheremRf(z)dz=2iπRes(f.i)butRes(f.i)=limzi(zi)f(z)=ei(i)2n=ei(1)n(2i)1thenRf(z)dz=πe(1)n=π(cos(1)n+isin(1)n)then0cos(x2n)(1+x2)1dx=π21cos(1)nand0sin(x2n)(1+x2)1dx=π.21sin(1)n<>....

  Pg 312      Pg 313      Pg 314      Pg 315      Pg 316      Pg 317      Pg 318      Pg 319      Pg 320      Pg 321   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com