Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 318

Question Number 25837    Answers: 1   Comments: 0

∫(x^n lnx)dx

(xnlnx)dx

Question Number 25824    Answers: 0   Comments: 0

if ∫_R e^(−x^2 ) dx = π^(1/2) find value of ∫_R a^(−x^2_ ) dx with a>0 and a not 1.

ifRex2dx=π1/2findvalueofRax2dxwitha>0andanot1.

Question Number 25821    Answers: 0   Comments: 0

answer to q25796 f_ ind the value off(x)= ∫_0^ ^π_ ln(1+xcosθ)dθ with 0<x<1 ∂f/∂x= ∫_0 ^π cosθ(1+xcosθ)^(−1) dθ=πx^(−1) −x^(−1) ∫_0 ^π (1+xcosθ)^(−1) dθand by the changeent tanθ=u then the changement u=((1+x)(1+x)^(−1^ ) )^ .t.we find ∫_0 ^θ (1+xcosθ)^(−1) dθ =π(1−x^2_ )^(−1/2) so ∂f/∂x=πx^(−1) −πx^(−1) (1−x^(−1/2) ) so f(x)= π ln(x)−π∫^x t^(−1) (1−t^2 )^(−1/2) dt but ∫^x t^(−1) (1−t^2 )dt=−1. 2^(−1) ln((1+(1−x^2 )^(1/2) .(1−(1−x^2 )^(1/2) )^(−1) ) and f(x)=πln(x)+π.2^(−1) ln( (1+(1−x^2 )^(1/2) ((1−(1−x^2 )^(1/2) )^(−1) +β β=f(1)=∫_0 ^(π=) ln(1+cosθ)dθ=−πln(2) so ∫_0 ^π (1+xcosθ)dθ = πlnx +π2^(−1) ln((1+(1−x^2 )^(1/2^ ) )((1−(1−x^2 )^(1/2) )^(−1) −πln(2).

answertoq25796findthevalueoff(x)=0πln(1+xcosθ)dθwith0<x<1f/x=0πcosθ(1+xcosθ)1dθ=πx1x10π(1+xcosθ)1dθandbythechangeenttanθ=uthenthechangementu=((1+x)(1+x)1).t.wefind0θ(1+xcosθ)1dθ=π(1x2)1/2sof/x=πx1πx1(1x1/2)sof(x)=πln(x)πxt1(1t2)1/2dtbutxt1(1t2)dt=1.21ln((1+(1x2)1/2.(1(1x2)1/2)1)andf(x)=πln(x)+π.21ln((1+(1x2)1/2((1(1x2)1/2)1+ββ=f(1)=0π=ln(1+cosθ)dθ=πln(2)so0π(1+xcosθ)dθ=πlnx+π21ln((1+(1x2)1/2)((1(1x2)1/2)1πln(2).

Question Number 25811    Answers: 0   Comments: 1

Question Number 25796    Answers: 0   Comments: 0

find the value of f(x)=∫_0^ ^π ln( 1+xcosθ)dθ with 0<x<1

findthevalueoff(x)=0πln(1+xcosθ)dθwith0<x<1

Question Number 26952    Answers: 1   Comments: 0

Question Number 25777    Answers: 1   Comments: 0

∫(1/(sin x+cos x))dx

1sinx+cosxdx

Question Number 25769    Answers: 0   Comments: 0

a−nser to question 25765...we put I=∫_0 ^∞ (cos(x^(2n) )(1+x^2 )^(−1) dx and J=∫_0 ^∞ sin(x^(2n) )(1+x^2 )^(−1) dx...we have 2(I+iJ)=∫_R e^(ix^(2n) ) (1+x^2 )^(−1) dx...let f(z)=e^(ix^(2n) ) (1+x^2 )^(−1) by residus therem ∫_R f(z)dz = 2iπRes(f.i) but Res(f.i)= lim_(z−i) (z−i)f(z)=e^(i(i)^(2n) ) = e^(i(−1)_ ^n ) (2i)^(−1) then ∫_R f(z)dz = πe^((−1)^n ) = π( cos(−1)^n +isin(−1)^n ) then ∫_0 ^∞ cos(x^(2n) )(1+x^2 )^(−1) dx =π2^(−1) cos(−1)^n and ∫_0 ^∞ sin(x^(2n) )(1+x^2 )^(−1) dx=π.2^(−1) sin(−1)^n_ <>....

ansertoquestion25765...weputI=0(cos(x2n)(1+x2)1dxandJ=0sin(x2n)(1+x2)1dx...wehave2(I+iJ)=Reix2n(1+x2)1dx...letf(z)=eix2n(1+x2)1byresidustheremRf(z)dz=2iπRes(f.i)butRes(f.i)=limzi(zi)f(z)=ei(i)2n=ei(1)n(2i)1thenRf(z)dz=πe(1)n=π(cos(1)n+isin(1)n)then0cos(x2n)(1+x2)1dx=π21cos(1)nand0sin(x2n)(1+x2)1dx=π.21sin(1)n<>....

Question Number 25765    Answers: 0   Comments: 0

find the value of ∫_0 ^∞ cos(x^(2n) )(1+x^2 )^(−1) dx and ∫_0 ^∞ sin( x^(2n) )^ (1+x^2 )^(−1) dx

findthevalueof0cos(x2n)(1+x2)1dxand0sin(x2n)(1+x2)1dx

Question Number 25762    Answers: 0   Comments: 0

find the value of∫_0 ^∞ artan(2x)(1+x^2 )^(−1_ ) the key of slution put F(t)=∫_0 ^∞ artan(xt)(1+x^2 )^(−1) find ∂F/∂t first then F(t) and take t=2 you will of find find the value of integral..

findthevalueof0artan(2x)(1+x2)1thekeyofslutionputF(t)=0artan(xt)(1+x2)1findF/tfirstthenF(t)andtaket=2youwilloffindfindthevalueofintegral..

Question Number 25683    Answers: 0   Comments: 0

find the value of ∫_0 ^∞ sin(x^n )( 1 + x^2 )^(−1) dx

findthevalueof0sin(xn)(1+x2)1dx

Question Number 25682    Answers: 1   Comments: 0

we give ∫_0 ^∞ t^(a−1) (1 + t)^(−1) dt =π (sin(πa))^(−1) with 0<a<1 find the value of ∫_0 ^∞ (1 +x^(16) )^(−1) dx

wegive0ta1(1+t)1dt=π(sin(πa))1with0<a<1findthevalueof0(1+x16)1dx

Question Number 25677    Answers: 0   Comments: 0

let 0<x<1 find the value of F(x) = ∫ ln (1+x cost)dt fromt=0 to t=pi

let0<x<1findthevalueofF(x)=ln(1+xcost)dtfromt=0tot=pi

Question Number 25676    Answers: 0   Comments: 0

find the value of ∫_0 ^∞ sin(x^ n )/x^ 2 + 1 dx

findthevalueof0sin(x^n)/x^2+1dx

Question Number 27181    Answers: 0   Comments: 1

find the value of ∫_0 ^(∝ ) ((ln(1+t^2 ))/(1−t^2 )) dt

findthevalueof0ln(1+t2)1t2dt

Question Number 27180    Answers: 0   Comments: 1

find the value of ∫∫_D (x^2 /y^2 ) dxdy with D ={(x ,y)∈R^2 / 1≤x≤2 and (1/x)≤y≤ x }.

findthevalueofDx2y2dxdywithD={(x,y)R2/1x2and1xyx}.

Question Number 25660    Answers: 0   Comments: 1

Question Number 25618    Answers: 1   Comments: 0

∫_6 ^5 f(x)dx

56f(x)dx

Question Number 26950    Answers: 0   Comments: 3

∫_0 ^1 ((6x^2 − x − 1)/(6x^2 − 5x + 1)) dx

106x2x16x25x+1dx

Question Number 25587    Answers: 0   Comments: 0

∫ (dx/(1+lnx))=?

dx1+lnx=?

Question Number 25475    Answers: 0   Comments: 0

Question Number 25474    Answers: 0   Comments: 0

Question Number 25468    Answers: 0   Comments: 0

Question Number 26949    Answers: 0   Comments: 2

∫_0 ^1 ∫_0 ^1 (1/(1 + xy)) dx dy

101011+xydxdy

Question Number 25447    Answers: 0   Comments: 1

Question Number 25446    Answers: 0   Comments: 0

  Pg 313      Pg 314      Pg 315      Pg 316      Pg 317      Pg 318      Pg 319      Pg 320      Pg 321      Pg 322   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com