Question and Answers Forum |
IntegrationQuestion and Answers: Page 327 |
∫ ((d((√(3x))))/(√((√x) + 7))) |
∫dx/x(√(x^4 −1)) |
∫(√(1+x^4 )) dx please solve this question. |
∫ ((sin x)/(1 + cos^2 x)) dx |
∫ (√(1 + (1/x^2 ) + (1/((x + 1)^2 )))) dx |
![]() |
∫ ((x + sinx)/(cosx)) dx |
∫_0 ^5 (1/(∫_1 ^8 e^x^(−5) ))dx |
![]() |
If y = (√(x^2 + (√(x^2 + (√(x^2 + (√(...)))))))) find ∫(y + (√y)) dx |
If f(x) = (√(x^2 (√(3(√(x^2 (√(3(√)...)))))))) find ∫ f(x) dx |
∫cos2x ln(1+tanx)dx |
prove that ∫_0 ^( π) ((x tanx)/(tanx+secx))dx=(π/2)(π−2) |
show that ∫_0 ^(π/4) ((x sinx)/(1+cos^2 x))dx=(π/4) |
(a) Evaluate the integral of the function: y(x) = ((3x + 1)/(2x^2 − 2x + 3)) (b) Find the constant A, B, C in the identity: ((3x^2 − ax)/((x − 2a)(x^2 + a^2 ))) ≡ (A/((x − 2a))) + ((Bx + Ca)/((x^2 + a^2 ))) where a is a constant, hence prove that. ∫_0 ^( 2) ((3x^2 − ax)/((x − 2a)(x^2 + a^2 ))) dx = (π/4) − (3/2) ln(2) |
![]() |
Please answer Q. 17525 |
evaluate; ∫ln (sin 2x)dx |
![]() |
Find the fourier series of : f(x) = x, from 0 < x < π |
∫_( 0) ^( n) x^2 (n − x)^p dx for p > 0 |
a particle starts with an initial speed u,it moves in a straight line with an accleration which varies as the square of the time the particle has been in motion. Find the speed at any time t,and the distance travelled. |
∫_( 0) ^( a/2) x^2 (a^2 − x^2 )^(3/2) dx |
Evaluate ∫_(−1) ^1 (1−x^2 )^(n/2) dx for n ∈ Z∩[0;∞) (i.e. 0, 1, 2, ...) and: a) n ≡ 0(mod 2) b) n ≡ 1(mod 2) |
∫(dx/(sin^5 x+cos^5 x)) |
S(n)=∫_0 ^1 x^(2n) sin(2nπx)dx |
Pg 322 Pg 323 Pg 324 Pg 325 Pg 326 Pg 327 Pg 328 Pg 329 Pg 330 Pg 331 |