Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 35

Question Number 178246    Answers: 1   Comments: 0

Question Number 177913    Answers: 0   Comments: 0

if I_n =∫xsin^n x dx and I_n = −((xsin^(n−1) x cosx )/n) +((sin^n x )/n^2 )+f(n)I_(n−2) then f(n) = ?

ifIn=xsinnxdxandIn=xsinn1xcosxn+sinnxn2+f(n)In2thenf(n)=?

Question Number 177906    Answers: 1   Comments: 0

∫_0 ^1 ((sin x(cos^2 x−cos^2 (π/5))(cos^2 x−cos^2 ((2π)/5)))/(sin 5x)) dx =?

10sinx(cos2xcos2π5)(cos2xcos22π5)sin5xdx=?

Question Number 177820    Answers: 2   Comments: 0

∫_(π/2) ^π (dx/((sin x−2cos x)^2 )) =?

ππ/2dx(sinx2cosx)2=?

Question Number 177784    Answers: 1   Comments: 0

Question Number 177775    Answers: 1   Comments: 0

∫((sin2x)/( (√(cos^4 x+1))))dx

sin2xcos4x+1dx

Question Number 177604    Answers: 0   Comments: 0

Calculate 𝛗=∫_0 ^( 1) (( ln(x ))/(1 + x^( 2) )) dx =^? −G ∼ Solution ∼ 𝛗 = ∫_0 ^( 1) {Σ_(k=0) ^∞ (−1)^( k) x^( 2k) ln(x) }dx = Σ_(k=0) ^∞ (−1 )^( k) ∫_0 ^( 1) x^( 2k) ln(x) dx =^(i.b.p) Σ_(k=0) ^∞ (−1 )^( k) {[(x^( 1+2k) /(1+2k)) ln(x ) ]_0 ^1 −(1/(1+2k))∫_0 ^( 1) x^( 2k) dx } = Σ_(k=0) ^∞ (( (−1)^(1+k) )/(( 1 + 2k )^( 2) )) = − G ( Catalan constant ) ∴ 𝛗 = − G ■ m.n

Calculateϕ=01ln(x)1+x2dx=?GSolutionϕ=01{k=0(1)kx2kln(x)}dx=k=0(1)k01x2kln(x)dx=i.b.pk=0(1)k{[x1+2k1+2kln(x)]0111+2k01x2kdx}=k=0(1)1+k(1+2k)2=G(Catalanconstant)ϕ=Gm.n

Question Number 177541    Answers: 0   Comments: 3

Question Number 178487    Answers: 3   Comments: 0

∫ (dx/(cot^3 x sin^7 x)) =?

dxcot3xsin7x=?

Question Number 177298    Answers: 1   Comments: 0

Prove that ∫_0 ^(π/2) ((sin^2 x)/((sin x+cos x)))dx=(1/( (√2)))log ((√2)+1)

Provethat0π2sin2x(sinx+cosx)dx=12log(2+1)

Question Number 177296    Answers: 2   Comments: 1

Evaluate ∫_0 ^π (x/(a^2 cos^2 x+b^2 sin^2 x))dx

Evaluate0πxa2cos2x+b2sin2xdx

Question Number 177242    Answers: 1   Comments: 0

∫ ((3x^(16) +5x^(14) )/((x^5 +x^2 +1)^4 ))dx

3x16+5x14(x5+x2+1)4dx

Question Number 177241    Answers: 1   Comments: 0

∫ ((sin x)/(sin (x−a)))dx

sinxsin(xa)dx

Question Number 177194    Answers: 1   Comments: 0

∫ (dx/((sin x)^((14)/9) (cos x)^(4/9) ))

dx(sinx)149(cosx)49

Question Number 176991    Answers: 2   Comments: 0

Question Number 176964    Answers: 0   Comments: 0

Question Number 176679    Answers: 2   Comments: 0

Eeasy integral.... 𝛀 = ∫_(−∫_0 ^( ∞) e^( −x^( 2) ) dx) ^( ∫_0 ^( ∞) e^( −x^( 2) ) dx) sin^( 2) (t).ln^( 3) ( t + (√(1+t^( 2) )))dt −−−m.n−−−

Eeasyintegral....Ω=0ex2dx0ex2dxsin2(t).ln3(t+1+t2)dtm.n

Question Number 176637    Answers: 0   Comments: 0

Question Number 176594    Answers: 0   Comments: 1

𝛗=∫_0 ^( 1) (( ( tanh^( −1) (x))^2 )/((1+x )^( 2) )) dx = ? ≺ solution ≻ note : tanh^( −1) (x)=− (1/2) ln(((1−x)/(1+x))) 𝛗= (1/4)∫_0 ^( 1) (( ln^( 2) (((1−x)/(1+x)) ))/((1+x )^( 2) )) dx =^(((1−x)/(1+x)) = t) (1/8)∫_0 ^( 1) ln^( 2) (t )dt =(1/8_ ) { [t.ln^( 2) (t)]_0 ^( 1) −2∫_0 ^( 1) ln(t)dt} =− (1/4) ∫_0 ^( 1) ln(t)dt= (1/4) ◂ m.n ▶

ϕ=01(tanh1(x))2(1+x)2dx=?solutionnote:tanh1(x)=12ln(1x1+x)ϕ=1401ln2(1x1+x)(1+x)2dx=1x1+x=t1801ln2(t)dt=18{[t.ln2(t)]01201ln(t)dt}=1401ln(t)dt=14m.n

Question Number 176570    Answers: 2   Comments: 0

(1) ∫^(π/2) _(π/3) ((1+sinx)/(cosx)) dx=?

(1)π3π21+sinxcosxdx=?

Question Number 176566    Answers: 0   Comments: 0

−−−− calculate: Φ = Σ_(n=0) ^( ∞) (( 1)/((2n+1 ).e^( 4n+2) )) = ? where ” e ” is euler number. ≺ solution ≻ Φ = Σ_(n=0) ^∞ (1/e^( 4n+2) ) ∫_0 ^( 1) x^( 2n) dx = (1/e^( 2) ) ∫_0 ^( 1) Σ_(n=0) ^∞ ((( x^2 )/e^( 4) ) )^( n) dx = (1/e^( 2) ) ∫_0 ^( 1) (( 1)/(1− ((x/e^( 2) ) )^( 2) )) dx=(1/(2e^( 2) )) ∫_0 ^( 1) (1/(1−(x/e^( 2) ))) +(1/(1+(x/e^( 2) )))dx = (1/2) ln ( ((1+(1/e^( 2) ))/(1−(1/e^( 2) ))) ) = tanh^( −1) ((( 1)/e^( 2) ) ) ∴ Φ = coth^( −1) ( e^( 2) ) ■ m.n

calculate:Φ=n=01(2n+1).e4n+2=?whereeiseulernumber.solutionΦ=n=01e4n+201x2ndx=1e201n=0(x2e4)ndx=1e20111(xe2)2dx=12e20111xe2+11+xe2dx=12ln(1+1e211e2)=tanh1(1e2)Φ=coth1(e2)m.n

Question Number 176542    Answers: 1   Comments: 0

Ω = ∫_0 ^( 1) (( x.tanh^( −1) (x))/((1+x)^( 2) ))dx= (1/(24)) (π^( 2) −6)

Ω=01x.tanh1(x)(1+x)2dx=124(π26)

Question Number 176421    Answers: 2   Comments: 0

Question Number 176334    Answers: 1   Comments: 0

Ψ = ∫_0 ^( 1) (( ln( 1+ x − x^( 2) ))/x)dx = ?

Ψ=01ln(1+xx2)xdx=?

Question Number 176289    Answers: 0   Comments: 1

∫ ((log (cosx + (√(cos2x))) )/(1−cos^2 x ))dx

log(cosx+cos2x)1cos2xdx

Question Number 176288    Answers: 0   Comments: 0

∫cos2xlog(1+tanx)dx

cos2xlog(1+tanx)dx

  Pg 30      Pg 31      Pg 32      Pg 33      Pg 34      Pg 35      Pg 36      Pg 37      Pg 38      Pg 39   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com