Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 36

Question Number 173972    Answers: 0   Comments: 0

Question Number 173971    Answers: 0   Comments: 2

Question Number 173908    Answers: 0   Comments: 6

find the value of b so that the line y=b divides the region bound by the graphs of the two functinos , into two regions of equal area. f(x)=9βˆ’x^2 and g(x)=0

findthevalueofbsothattheliney=bdividestheregionboundbythegraphsofthetwofunctinos,intotworegionsofequalarea.f(x)=9βˆ’x2andg(x)=0

Question Number 174024    Answers: 2   Comments: 0

Question Number 173859    Answers: 0   Comments: 0

Question Number 173557    Answers: 0   Comments: 2

Question Number 173523    Answers: 2   Comments: 0

Question Number 173486    Answers: 0   Comments: 1

𝛗 = ∫_0 ^( ∞) ((cos (ax)βˆ’ sin(bx))/x^( 2) )dx =? 𝛗=∫_0 ^( ∞) ((1βˆ’2sin^( 2) (((ax)/2))βˆ’(1βˆ’2sin^( 2) (((bx)/2))))/(x^2 ))dx =2 {∫_0 ^( ∞) (((sin(((bx)/2)))/x))^2 dx=Θ_1 }βˆ’2{∫_0 ^( ∞) (((sin(((ax)/2)))/x))^2 dx=Θ_2 } Θ_( 1) =^(((bx)/2)=t) (b/2)∫_0 ^( ∞) ((sin^( 2) (t))/t^( 2) )dt= ((Ο€b)/4) similarly : Θ_( 2) =((Ο€a)/4) ∴ 𝛗= (Ο€/2)(∣bβˆ£βˆ’βˆ£a∣) Dirichletβ€²s integrals: ∫_0 ^( ∞) ((sin(x))/x)dx=(Ο€/2)=∫_0 ^( ∞) ((sin^2 (x))/x^( 2) )dx

Ο•=∫0∞cos(ax)βˆ’sin(bx)x2dx=?Ο•=∫0∞1βˆ’2sin2(ax2)βˆ’(1βˆ’2sin2(bx2))x2dx=2{∫0∞(sin(bx2)x)2dx=Θ1}βˆ’2{∫0∞(sin(ax2)x)2dx=Θ2}Θ1=bx2=tb2∫0∞sin2(t)t2dt=Ο€b4similarly:Θ2=Ο€a4βˆ΄Ο•=Ο€2(∣bβˆ£βˆ’βˆ£a∣)Dirichletβ€²sintegrals:∫0∞sin(x)xdx=Ο€2=∫0∞sin2(x)x2dx

Question Number 173424    Answers: 1   Comments: 0

prove that ∫_0 ^( ∞) (( sin(x))/(sinh(x))) dx = (Ο€/2)tanh((Ο€/2))

provethat∫0∞sin(x)sinh(x)dx=Ο€2tanh(Ο€2)

Question Number 173166    Answers: 0   Comments: 0

Question Number 173150    Answers: 1   Comments: 0

let βˆ€n∈N: I_n (f(x))= the n^(th) antiderivate of f(x) with I_0 =f(x) find the formula for the constants a_n , b_n of I_n (ln x)=a_n x^n ln x +b_n x^n

letβˆ€n∈N:In(f(x))=thenthantiderivateoff(x)withI0=f(x)findtheformulafortheconstantsan,bnofIn(lnx)=anxnlnx+bnxn

Question Number 173149    Answers: 0   Comments: 1

∫_0 ^( ∞) (( dx)/( (√(1+x)) .(2+2x +x^( 2) )))=(1/Οƒ) (Ο€βˆ’ln(3+2(√3) )) Οƒ = ? βˆ’βˆ’ solution βˆ’βˆ’ Ξ©=^((√(1+x)) =t) 2∫_0 ^( ∞) (dt/( 1+ t^( 4) )) = 2∫_0 ^( 1) (dt/(1 + t^( 4) )) Ξ¨ = ∫_0 ^( 1) (( dt)/(1+t^( 4) )) = (1/2)∫_0 ^( 1) (( 1+t^( 2) βˆ’(t^( βˆ’2) βˆ’1))/(1+t^( 4) ))dt = (1/2) ∫_0 ^( 1) (( 1+ t^( 2) )/(1+t^( 4) )) dt +(1/2) ∫_0 ^( 1) ((1βˆ’t^( 2) )/(1+ t^( 4) )) dt Ξ¦=∫_0 ^( 1) ((1 +t^( 2) )/(1+t^( 4) ))dt =∫_0 ^( 1) (( t^( βˆ’2) +1)/(t^( βˆ’2) + t^( 2) )) dt =∫_0 ^( 1) (( 1+t^( βˆ’2) )/(( t^ βˆ’ t^( βˆ’1) )^( 2) +2)) =^(sub) [ (1/( (√2))) tan^( βˆ’1) (t βˆ’t^( βˆ’1) )]_0 ^1 =(Ο€/(2(√2))) βˆ— 𝛗 = ∫_0 ^( 1) (( 1βˆ’t^( 2) )/(1+t^( 4) )) dt = ∫_0 ^( 1) ((t^( βˆ’2) βˆ’1)/(( t +t^( βˆ’1) )^( 2) βˆ’2))dt =^(t +(1/t) =u) βˆ’βˆ«_2 ^( ∞) (du/(( uβˆ’(√2) )(u+ (√2) ))) = ((βˆ’1)/(2(√2))) [ln(((u βˆ’(√2))/(u+(√2))))]_2 ^( ∞) =(1/(2(√2))) ln(((2βˆ’(√2))/(2+(√2))) ) 𝛗 =βˆ’(1/(2(√2))) ln( 3 +2(√2) ) βˆ—βˆ— (βˆ—) & (βˆ—βˆ—):: Ξ©=2Ξ¨= (Ξ¦ + 𝛗) =(1/(2(√2))) ( Ο€ βˆ’ln( 3 +2(√2) ) ...β– m.n

∫0∞dx1+x.(2+2x+x2)=1Οƒ(Ο€βˆ’ln(3+23))Οƒ=?βˆ’βˆ’solutionβˆ’βˆ’Ξ©=1+x=t2∫0∞dt1+t4=2∫01dt1+t4Ξ¨=∫01dt1+t4=12∫011+t2βˆ’(tβˆ’2βˆ’1)1+t4dt=12∫011+t21+t4dt+12∫011βˆ’t21+t4dtΞ¦=∫011+t21+t4dt=∫01tβˆ’2+1tβˆ’2+t2dt=∫011+tβˆ’2(tβˆ’tβˆ’1)2+2=sub[12tanβˆ’1(tβˆ’tβˆ’1)]01=Ο€22βˆ—Ο•=∫011βˆ’t21+t4dt=∫01tβˆ’2βˆ’1(t+tβˆ’1)2βˆ’2dt=t+1t=uβˆ’βˆ«2∞du(uβˆ’2)(u+2)=βˆ’122[ln(uβˆ’2u+2)]2∞=122ln(2βˆ’22+2)Ο•=βˆ’122ln(3+22)βˆ—βˆ—(βˆ—)&(βˆ—βˆ—)::Ξ©=2Ξ¨=(Ξ¦+Ο•)=122(Ο€βˆ’ln(3+22)...β—Όm.n

Question Number 173148    Answers: 1   Comments: 0

∫_0 ^1 ^n (√x) (arcsin x) dx

∫01nx(arcsinx)dx

Question Number 173139    Answers: 1   Comments: 0

Question Number 173068    Answers: 2   Comments: 0

Question Number 173005    Answers: 0   Comments: 1

Question Number 172996    Answers: 1   Comments: 0

let U_n =∫_0 ^1 (√(1βˆ’x^n ))ln^2 xdx 1)lim U_n ? 2)equivalent of U_n (nβ†’βˆž)

letUn=∫011βˆ’xnln2xdx1)limUn?2)equivalentofUn(nβ†’βˆž)

Question Number 181403    Answers: 1   Comments: 0

Refer to Q181319 ∫((x^4 +1)/(x^4 +x+2))dx ((x^4 +1)/(x^4 +x+2))=1+(x/(2(x^2 +x+1)))βˆ’(x/(2(x^2 βˆ’x+1))) =1+(1/4)[(((2x+1)βˆ’1)/(x^2 +x+1))βˆ’(1/4)Γ—(((2xβˆ’1)+1)/((x^2 βˆ’x+1))) =(1/4)Γ—[log(x^2 +x+1)]^β€² βˆ’(1/4)Γ—((1/([((√3)/2)(x+(1/2))^2 ]+1))) βˆ’((1/4)[log(x^2 βˆ’x+1)]^β€² +(1/4)((1/([((√3)/2)Γ—(xβˆ’(1/2)]^2 +1)))) first with [((√3)/2)( x+(1/2))]=u ∫(1/(u^2 +1))du=arctg(u) and v=[((√3)/2)(xβˆ’(1/2) )]=v ∫(dv/(1+v^2 ))=arctg(v) ...............

RefertoQ181319∫x4+1x4+x+2dxx4+1x4+x+2=1+x2(x2+x+1)βˆ’x2(x2βˆ’x+1)=1+14[(2x+1)βˆ’1x2+x+1βˆ’14Γ—(2xβˆ’1)+1(x2βˆ’x+1)=14Γ—[log(x2+x+1)]β€²βˆ’14Γ—(1[32(x+12)2]+1)βˆ’(14[log(x2βˆ’x+1)]β€²+14(1[32Γ—(xβˆ’12]2+1))firstwith[32(x+12)]=u∫1u2+1du=arctg(u)andv=[32(xβˆ’12)]=v∫dv1+v2=arctg(v)...............

Question Number 172953    Answers: 2   Comments: 0

find ∫_0 ^1 (√(1βˆ’x^4 ))lnx dx

find∫011βˆ’x4lnxdx

Question Number 172949    Answers: 0   Comments: 0

Question Number 172944    Answers: 1   Comments: 1

∫∫_d dxdy x=y^2 βˆ’1 x=1βˆ’y D=?

∫∫ddxdyx=y2βˆ’1x=1βˆ’yD=?

Question Number 172899    Answers: 0   Comments: 0

∫_0 ^∞ e^(βˆ’e^x ) (√x) dx=?

∫0∞eβˆ’exxdx=?

Question Number 172872    Answers: 4   Comments: 0

lim_( x→ 0^+ ) (x^( (1/(ln(xsin(x^3 ))))) )=?

limx→0+(x1ln(xsin(x3)))=?

Question Number 172847    Answers: 0   Comments: 0

Question Number 172823    Answers: 1   Comments: 0

Question Number 172822    Answers: 1   Comments: 0

  Pg 31      Pg 32      Pg 33      Pg 34      Pg 35      Pg 36      Pg 37      Pg 38      Pg 39      Pg 40   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com