Question and Answers Forum |
IntegrationQuestion and Answers: Page 36 |
![]() |
![]() |
find the value of b so that the line y=b divides the region bound by the graphs of the two functinos , into two regions of equal area. f(x)=9βx^2 and g(x)=0 |
![]() |
![]() |
![]() |
![]() |
π = β«_0 ^( β) ((cos (ax)β sin(bx))/x^( 2) )dx =? π=β«_0 ^( β) ((1β2sin^( 2) (((ax)/2))β(1β2sin^( 2) (((bx)/2))))/(x^2 ))dx =2 {β«_0 ^( β) (((sin(((bx)/2)))/x))^2 dx=Ξ_1 }β2{β«_0 ^( β) (((sin(((ax)/2)))/x))^2 dx=Ξ_2 } Ξ_( 1) =^(((bx)/2)=t) (b/2)β«_0 ^( β) ((sin^( 2) (t))/t^( 2) )dt= ((Οb)/4) similarly : Ξ_( 2) =((Οa)/4) β΄ π= (Ο/2)(β£bβ£ββ£aβ£) Dirichletβ²s integrals: β«_0 ^( β) ((sin(x))/x)dx=(Ο/2)=β«_0 ^( β) ((sin^2 (x))/x^( 2) )dx |
prove that β«_0 ^( β) (( sin(x))/(sinh(x))) dx = (Ο/2)tanh((Ο/2)) |
![]() |
let βnβN: I_n (f(x))= the n^(th) antiderivate of f(x) with I_0 =f(x) find the formula for the constants a_n , b_n of I_n (ln x)=a_n x^n ln x +b_n x^n |
β«_0 ^( β) (( dx)/( (β(1+x)) .(2+2x +x^( 2) )))=(1/Ο) (Οβln(3+2(β3) )) Ο = ? ββ solution ββ Ξ©=^((β(1+x)) =t) 2β«_0 ^( β) (dt/( 1+ t^( 4) )) = 2β«_0 ^( 1) (dt/(1 + t^( 4) )) Ξ¨ = β«_0 ^( 1) (( dt)/(1+t^( 4) )) = (1/2)β«_0 ^( 1) (( 1+t^( 2) β(t^( β2) β1))/(1+t^( 4) ))dt = (1/2) β«_0 ^( 1) (( 1+ t^( 2) )/(1+t^( 4) )) dt +(1/2) β«_0 ^( 1) ((1βt^( 2) )/(1+ t^( 4) )) dt Ξ¦=β«_0 ^( 1) ((1 +t^( 2) )/(1+t^( 4) ))dt =β«_0 ^( 1) (( t^( β2) +1)/(t^( β2) + t^( 2) )) dt =β«_0 ^( 1) (( 1+t^( β2) )/(( t^ β t^( β1) )^( 2) +2)) =^(sub) [ (1/( (β2))) tan^( β1) (t βt^( β1) )]_0 ^1 =(Ο/(2(β2))) β π = β«_0 ^( 1) (( 1βt^( 2) )/(1+t^( 4) )) dt = β«_0 ^( 1) ((t^( β2) β1)/(( t +t^( β1) )^( 2) β2))dt =^(t +(1/t) =u) ββ«_2 ^( β) (du/(( uβ(β2) )(u+ (β2) ))) = ((β1)/(2(β2))) [ln(((u β(β2))/(u+(β2))))]_2 ^( β) =(1/(2(β2))) ln(((2β(β2))/(2+(β2))) ) π =β(1/(2(β2))) ln( 3 +2(β2) ) ββ (β) & (ββ):: Ξ©=2Ξ¨= (Ξ¦ + π) =(1/(2(β2))) ( Ο βln( 3 +2(β2) ) ...β m.n |
β«_0 ^1 ^n (βx) (arcsin x) dx |
![]() |
![]() |
![]() |
let U_n =β«_0 ^1 (β(1βx^n ))ln^2 xdx 1)lim U_n ? 2)equivalent of U_n (nββ) |
Refer to Q181319 β«((x^4 +1)/(x^4 +x+2))dx ((x^4 +1)/(x^4 +x+2))=1+(x/(2(x^2 +x+1)))β(x/(2(x^2 βx+1))) =1+(1/4)[(((2x+1)β1)/(x^2 +x+1))β(1/4)Γ(((2xβ1)+1)/((x^2 βx+1))) =(1/4)Γ[log(x^2 +x+1)]^β² β(1/4)Γ((1/([((β3)/2)(x+(1/2))^2 ]+1))) β((1/4)[log(x^2 βx+1)]^β² +(1/4)((1/([((β3)/2)Γ(xβ(1/2)]^2 +1)))) first with [((β3)/2)( x+(1/2))]=u β«(1/(u^2 +1))du=arctg(u) and v=[((β3)/2)(xβ(1/2) )]=v β«(dv/(1+v^2 ))=arctg(v) ............... |
find β«_0 ^1 (β(1βx^4 ))lnx dx |
![]() |
β«β«_d dxdy x=y^2 β1 x=1βy D=? |
β«_0 ^β e^(βe^x ) (βx) dx=? |
lim_( xβ 0^+ ) (x^( (1/(ln(xsin(x^3 ))))) )=? |
![]() |
![]() |
![]() |