Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 37

Question Number 172088    Answers: 1   Comments: 0

Question Number 172072    Answers: 0   Comments: 0

Question Number 172013    Answers: 1   Comments: 0

find: ∫xe^(−ax) ax

find:xeaxax

Question Number 172012    Answers: 1   Comments: 0

find ∫e^x sinxdx

findexsinxdx

Question Number 172011    Answers: 1   Comments: 0

find integrate: ∫x^2 e^x dx

findintegrate:x2exdx

Question Number 172010    Answers: 1   Comments: 0

find integrate: ∫xe^x dx

findintegrate:xexdx

Question Number 171971    Answers: 2   Comments: 0

∫(x/(x^2 +4x+3)) dx=...

xx2+4x+3dx=...

Question Number 171910    Answers: 3   Comments: 0

∫ (dx/(9 − 4x^2 )) using the trigonometric substitution.

dx94x2usingthetrigonometricsubstitution.

Question Number 171727    Answers: 3   Comments: 0

Question Number 171708    Answers: 1   Comments: 0

∫_0 ^∞ 2x−3 dx=...

02x3dx=...

Question Number 171601    Answers: 0   Comments: 0

Question Number 171565    Answers: 0   Comments: 4

Question Number 171560    Answers: 1   Comments: 1

Nice Integral Ω = ∫_0 ^( (π/4)) (( tan(x))/(( cos^( 2) (x) + 2sin^( 2) (x))))dx =

NiceIntegralΩ=0π4tan(x)(cos2(x)+2sin2(x))dx=

Question Number 171442    Answers: 0   Comments: 1

Question Number 171395    Answers: 1   Comments: 2

∫_(−∞) ^(+∞) (x^2 /(1+x^4 ))dx

+x21+x4dx

Question Number 171392    Answers: 0   Comments: 1

∫_0 ^(π/2) ((cos x)/((1+(√(sin 2x)) )^3 )) dx =?

π20cosx(1+sin2x)3dx=?

Question Number 171371    Answers: 3   Comments: 0

∫_(−∞) ^(+∞) (dx/(1+x^4 ))=?

+dx1+x4=?

Question Number 171367    Answers: 0   Comments: 0

Question Number 171301    Answers: 0   Comments: 1

∫_1 ^2 6x^2 −2x+3

126x22x+3

Question Number 171260    Answers: 1   Comments: 0

Change to polar coordinates: ∫^( 4a) _0 ∫_(y^2 /4a) ^a (((x^2 −y^2 )/(x^2 +y^2 ))) dx dy

Changetopolarcoordinates:04ay2/4aa(x2y2x2+y2)dxdy

Question Number 171253    Answers: 2   Comments: 0

Question Number 171213    Answers: 0   Comments: 0

In electricity, the electrostatic field is defined as: E = ∫_0 ^π [((a^2 σ sin θ)/(2ε(√(a^2 −x^2 −2ax cosθ))))]dθ where a,σ and ε are constants. Consider that x>a and show that E= ((a^2 σ)/(εx))

Inelectricity,theelectrostaticfieldisdefinedas:E=0π[a2σsinθ2ϵa2x22axcosθ]dθwherea,σandϵareconstants.Considerthatx>aandshowthatE=a2σϵx

Question Number 171198    Answers: 1   Comments: 0

evaluate ∫_0 ^( π) log (a+cos x)dx

evaluate0πlog(a+cosx)dx

Question Number 171171    Answers: 1   Comments: 2

Question Number 171130    Answers: 0   Comments: 0

Question Number 171125    Answers: 1   Comments: 0

  Pg 32      Pg 33      Pg 34      Pg 35      Pg 36      Pg 37      Pg 38      Pg 39      Pg 40      Pg 41   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com