Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 39

Question Number 170501    Answers: 1   Comments: 0

solve this: ∫∫_D x^2 e^(xy) dxdy D:{(x.y)∈R^2 /0≤x≤1. 0≤y≤2} ∫∫_D ((ydxdy)/((1+x^2 +y^2 )^(3/2) )). 0≤x≤1.0≤y≤1.

solvethis:Dx2exydxdyD:{(x.y)R2/0x1.0y2}Dydxdy(1+x2+y2)32.0x1.0y1.

Question Number 170475    Answers: 0   Comments: 0

An easy question of Measure theory: Prove that : μ ( Q )=0 ■m.n

AneasyquestionofMeasuretheory:Provethat:μ(Q)=0m.n

Question Number 170388    Answers: 0   Comments: 0

Question Number 170384    Answers: 0   Comments: 0

Prove that ∫_0 ^( (π/2)) ln(a−sin^2 (x))dx=πln((√((a−1)/a))+1)+(π/2)ln((a/4)) a>0 Im{a}≠0

Provethat0π2ln(asin2(x))dx=πln(a1a+1)+π2ln(a4)a>0Im{a}0

Question Number 170368    Answers: 0   Comments: 0

Question Number 170349    Answers: 1   Comments: 0

help please ∫_1 ^∞ ((1/t)−sin^(−1) ((1/t))) dt I can show that it is equal to −Σ_(n≥0) (−1)^n (((2n−1)!)/(4^n (n!)^2 (2n+1))) but I cant calculate it...

helpplease1(1tsin1(1t))dtIcanshowthatitisequalton0(1)n(2n1)!4n(n!)2(2n+1)butIcantcalculateit...

Question Number 170189    Answers: 0   Comments: 2

Question Number 170255    Answers: 1   Comments: 0

(d/dx)[∫_2 ^x e^t^2 dt=?

ddx[2xet2dt=?

Question Number 170109    Answers: 0   Comments: 0

Question Number 169930    Answers: 0   Comments: 0

find f(α)=∫_0 ^1 ((arctan(αx))/(1+x^2 ))dx

findf(α)=01arctan(αx)1+x2dx

Question Number 169906    Answers: 0   Comments: 0

Evaluate ∫∫e^(2x+3y) dxdy over the triangle bounded by the lines x = 0, y = 0, x+y = 1.

Evaluatee2x+3ydxdyoverthetriangleboundedbythelinesx=0,y=0,x+y=1.

Question Number 169873    Answers: 2   Comments: 0

∫_0 ^1 ((ln(1+x))/x)dx=?

10ln(1+x)xdx=?

Question Number 169864    Answers: 1   Comments: 0

Question Number 169825    Answers: 1   Comments: 0

Question Number 169706    Answers: 0   Comments: 0

using cylindrical coordinates { ((x=rcosθ)),((y = rsin θ)),((z=z)) :} to evaluate the integral K= ∫∫∫_S (√(x^2 +y^2 −z^2 )) dxdydz where S= {(x,y,z) ∈R^3 : x^2 +y^2 ≤ 4, 0 ≤z≤(√(x^2 +y^2 ))}

usingcylindricalcoordinates{x=rcosθy=rsinθz=ztoevaluatetheintegralK=Sx2+y2z2dxdydzwhereS={(x,y,z)R3:x2+y24,0zx2+y2}

Question Number 169677    Answers: 2   Comments: 0

M = ∫ (dx/((x−4)(√(x^2 −6x+8)))) =?

M=dx(x4)x26x+8=?

Question Number 169654    Answers: 2   Comments: 0

∫_0 ^1 ((3x^3 −x^2 +2x−4)/( (√(x^2 −3x+2)))) dx = ?

013x3x2+2x4x23x+2dx=?

Question Number 169563    Answers: 0   Comments: 1

Question Number 169559    Answers: 1   Comments: 1

Question Number 169548    Answers: 0   Comments: 1

Question Number 169504    Answers: 0   Comments: 1

Question Number 169421    Answers: 0   Comments: 0

Question Number 169268    Answers: 1   Comments: 0

𝛀=∫((cos^2 (ln(tan(x/2))))/(tan((x/2))))dx=?

Ω=cos2(ln(tanx2))tan(x2)dx=?

Question Number 169259    Answers: 0   Comments: 1

Question Number 169230    Answers: 1   Comments: 0

Question Number 169169    Answers: 0   Comments: 3

  Pg 34      Pg 35      Pg 36      Pg 37      Pg 38      Pg 39      Pg 40      Pg 41      Pg 42      Pg 43   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com