Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 4

Question Number 217683    Answers: 0   Comments: 0

Prove:∫_0 ^1 (√((((√(K^2 +36K′^2 ))+6K^′ )/(K^2 +36K^(′2) )) ))(dk/( (√k)(1−k^2 )^(2/3) ))=(√π)((√2)−(√((4−2(√2))/3)))

Prove:01K2+36K2+6KK2+36K2dkk(1k2)23=π(24223)

Question Number 217685    Answers: 0   Comments: 0

Question Number 217626    Answers: 1   Comments: 0

lim_( λ→0) ∫_λ ^( 2λ) (( e^(2t ) )/t) dt = ?

limλ0λ2λe2ttdt=?

Question Number 217441    Answers: 2   Comments: 0

∫_0 ^1 ((ln^3 (1−x))/x^3 ) dx=?

01ln3(1x)x3dx=?

Question Number 217431    Answers: 2   Comments: 0

Question Number 217423    Answers: 1   Comments: 0

Question Number 217408    Answers: 1   Comments: 0

l∫sin 7xdx

lsin7xdx

Question Number 217356    Answers: 1   Comments: 0

Question Number 217290    Answers: 4   Comments: 0

∫_0 ^( 1) ((ln^2 (1−x))/x^2 ) dx= ?

01ln2(1x)x2dx=?

Question Number 217289    Answers: 1   Comments: 1

∫_0 ^1 sin^(−1) (1/( (√(1+x−x^2 )))) dx=?

10sin111+xx2dx=?

Question Number 217255    Answers: 1   Comments: 0

∫_(−∞) ^(+∞) e^(−(x^2 /2)) dx=(√(2π)),∫_(−∞) ^(+∞) e^(−(x^2 /2)+x) dx.

+ex22dx=2π,+ex22+xdx.

Question Number 217219    Answers: 1   Comments: 0

calculate determinant ((( L ( ∫_1 ^( ∞) (( e^( −tx) )/x)dx ) =_(transfom) ^(laplace) ? ; t>0 )))

calculateL(1etxxdx)=laplacetransfom?;t>0

Question Number 217211    Answers: 1   Comments: 0

a nice one: prove ∫_0 ^1 (√(−((ln t)/t))) dt=(√(2π))

aniceone:prove10lnttdt=2π

Question Number 217122    Answers: 1   Comments: 0

∫ ((√(cos 2x))/(cos x)) dx =?

cos2xcosxdx=?

Question Number 216990    Answers: 2   Comments: 0

(1) ∫(sec^2 x∙(√(tan x)))dx=?

(1)(sec2xtanx)dx=?

Question Number 216886    Answers: 0   Comments: 1

Evaluate ((Σ_(k=1) ^(10) (∫_0 ^k (4u+1)du))/(5^2 Σ_(n=1) ^∞ (1/2)(Σ_(n=2) ^∞ (2/(m^2 +2m)))^(n−1) ))∫_(sin^(−1) (((−(√2))/2))) ^((π/2)cos(π/2)) (((1−secθsinθ)/((tanθ+cotθ)/(ϱ^θ −ϱ^(πi) ))))dθ

Evaluate10k=1(0k(4u+1)du)52n=112(n=22m2+2m)n1sin1(22)π2cosπ2(1secθsinθtanθ+cotθϱθϱπi)dθ

Question Number 216819    Answers: 0   Comments: 0

Prove:∫_(0 ) ^1 ((K(x))/( (√(3−x))))dx=(1/(96π(√3)))×Γ((1/(24)))Γ((3/(24)))Γ((7/(24)))Γ(((11)/(24)))

Prove:01K(x)3xdx=196π3×Γ(124)Γ(324)Γ(724)Γ(1124)

Question Number 216799    Answers: 1   Comments: 1

Question Number 216776    Answers: 1   Comments: 0

Question Number 216774    Answers: 1   Comments: 0

find ∫ ((tan^2 (x) )/(1+sec^4 (x))) .dx

findtan2(x)1+sec4(x).dx

Question Number 216772    Answers: 1   Comments: 0

find ∫((tan^2 (x) )/(1−sec^4 (x))) .dx

findtan2(x)1sec4(x).dx

Question Number 216754    Answers: 2   Comments: 0

∫_( 0) ^( 1) ((x ln^2 (x))/(1 + x^2 )) dx

01xln2(x)1+x2dx

Question Number 216742    Answers: 1   Comments: 0

(1/2)∫_( 0) ^( 1) ((ln(a − 1))/a) da

1201ln(a1)ada

Question Number 216715    Answers: 2   Comments: 0

Find ∫((Sin(((5x )/(2 ))) )/(Sin(((x )/(2 ))) )) .dx

FindSin(5x2)Sin(x2).dx

Question Number 216618    Answers: 2   Comments: 0

∫_( 0) ^( 2π) (√(1 − cos^2 x)) dx Is the answer 0 or 4????

02π1cos2xdxIstheanswer0or4????

Question Number 216613    Answers: 0   Comments: 1

∫_a ^( x) ((1−bln (x/a))/( (√(1−(1−bln (x/a))^2 )))) dx

ax1blnxa1(1blnxa)2dx

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com