Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 40

Question Number 171371    Answers: 3   Comments: 0

∫_(−∞) ^(+∞) (dx/(1+x^4 ))=?

+dx1+x4=?

Question Number 171367    Answers: 0   Comments: 0

Question Number 171301    Answers: 0   Comments: 1

∫_1 ^2 6x^2 −2x+3

126x22x+3

Question Number 171260    Answers: 1   Comments: 0

Change to polar coordinates: ∫^( 4a) _0 ∫_(y^2 /4a) ^a (((x^2 −y^2 )/(x^2 +y^2 ))) dx dy

Changetopolarcoordinates:04ay2/4aa(x2y2x2+y2)dxdy

Question Number 171253    Answers: 2   Comments: 0

Question Number 171213    Answers: 0   Comments: 0

In electricity, the electrostatic field is defined as: E = ∫_0 ^π [((a^2 σ sin θ)/(2ε(√(a^2 −x^2 −2ax cosθ))))]dθ where a,σ and ε are constants. Consider that x>a and show that E= ((a^2 σ)/(εx))

Inelectricity,theelectrostaticfieldisdefinedas:E=0π[a2σsinθ2ϵa2x22axcosθ]dθwherea,σandϵareconstants.Considerthatx>aandshowthatE=a2σϵx

Question Number 171198    Answers: 1   Comments: 0

evaluate ∫_0 ^( π) log (a+cos x)dx

evaluate0πlog(a+cosx)dx

Question Number 171171    Answers: 1   Comments: 2

Question Number 171130    Answers: 0   Comments: 0

Question Number 171125    Answers: 1   Comments: 0

Question Number 171117    Answers: 3   Comments: 0

∫_0 ^∞ ((sin x)/x)dx = (?)

0sinxxdx=(?)

Question Number 171108    Answers: 1   Comments: 0

Question Number 171096    Answers: 1   Comments: 0

∫((x e^(2x) )/((2x+1)^2 ))dx please help

xe2x(2x+1)2dxpleasehelp

Question Number 171090    Answers: 1   Comments: 3

I_n =∫_0 ^1 (1−u)(√(ud(u))) Demonstrate that ∀n∈N, I_(n+1) −I_n =(1−u)^n u^(3/2) d(u) and deduce the meaning of variations of (I_n )∈N

In=01(1u)ud(u)DemonstratethatnN,In+1In=(1u)nu32d(u)anddeducethemeaningofvariationsof(In)N

Question Number 171021    Answers: 0   Comments: 0

Question Number 171039    Answers: 1   Comments: 0

I_n =∫_0 ^1 (1−u)^n (√(ud(u))) Demonstrate that ∀n∈N, I_n ≥0

In=01(1u)nud(u)DemonstratethatnN,In0

Question Number 170953    Answers: 0   Comments: 3

Question Number 170855    Answers: 1   Comments: 0

⌊x⌋= log_2 (4^( x) −2^( x) −1)⇒ ⌊ 4^( x) ⌋=?

x=log2(4x2x1)4x=?

Question Number 170871    Answers: 1   Comments: 0

Why is it equal? (1/2)∫_0 ^π sin^(2p) udu=∫_0 ^(π/2) sin^(2p) udu

Whyisitequal?12π0sin2pudu=π20sin2pudu

Question Number 170831    Answers: 2   Comments: 0

Question Number 170802    Answers: 2   Comments: 0

Question Number 170726    Answers: 0   Comments: 0

Question Number 170725    Answers: 1   Comments: 0

Question Number 170722    Answers: 2   Comments: 0

Question Number 170663    Answers: 2   Comments: 1

Question Number 170610    Answers: 1   Comments: 0

  Pg 35      Pg 36      Pg 37      Pg 38      Pg 39      Pg 40      Pg 41      Pg 42      Pg 43      Pg 44   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com